Detail předmětu

Matematika I/1

FAST-BA06Ak. rok: 2009/2010

Reálná funkce jedné reálné proměnné. Posloupnosti, limita a spojitost funkce. Derivace funkce, její geometrický a fyzikální význam, základní věty o derivacích, derivace vyšších řádů, diferenciály funkce, Taylorův rozvoj funkce, průběh funkce.
Lineární algebra (základy maticového počtu, hodnost matice, Gaussova eliminační metoda, inverze matic, determinanty a jejich aplikace). Vlastní čísla a vlastní vektory matice. Základy vektorového počtu. Lineární prostory. Analytická geometrie (skalární, vektorový a smíšený součin vektorů, afinní a metrické úlohy pro lineární útvary v E3).

Jazyk výuky

čeština

Počet kreditů

6

Zajišťuje ústav

Ústav matematiky a deskriptivní geometrie (MAT)

Výsledky učení předmětu

Student zvládne hlavní cíle předmětu. Pochopí základní pojmy diferenciálního a integrálního počtu funkce jedné proměnné a geometrické interpretace některých pojmů. Zvládne kalkul derivování a naučí se řešit úlohu průběhu funkce.
Zvládne počítání s maticemi, elementární úpravy a vyčíslení determinantů, řešení soustavy lineárních algebraických rovnic (Gaussovou eliminační metodou, Cramerovým pravidlem a užitím inverzní matice). Seznámí se s užitím vektorového počtu v řešení úloh analytické geometrie v prostoru.

Prerekvizity

Základní znalosti z matematiky v rozsahu střední školy. Grafy základních elementárních funkcí (mocniny a odmocniny, kvadratická funkce, přímá a nepřímá úměra, absolutní hodnota, goniometrické funkce) a základní vlastnosti těchto funkcí. Umět provádět úpravy algebraických výrazů. Znát pojem geometrického vektoru a základy analytické geometrie ve třírozměrném euklidovském prostoru (parametrické rovnice přímky, obecná rovnice roviny, skalární součin vektorů a jeho použití při řešení metrických a polohových úloh). Umět určovat typy a základní prvky kuželoseček, kreslit jejich grafy.

Způsob a kritéria hodnocení

Podmínky pro úspěšné ukončení předmětu stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Osnovy výuky

1. Reálná funkce jedné reálné proměnné, explicitní a parametrické zadání funkce. (50 min.) - Složená a inverzní funkce. (50 min.)
Cv. Absolutní hodnota funkce. Řešení kvadratické rovnice v komplexním oboru. Kuželosečky. (50 min.) - Grafy vybraných typů elementárních funkcí. Základní vlastnosti funkcí. (50 min.)

2. Některé elementární funkce, cyklometrické funkce. Hyperbolické funkce. (50 min.) – Polynom a jeho základní kořenové vlastnosti, rozklad polynomu v reálném oboru. (50 min.)
Cv. Funkce složená a inverzní (cyklometrické funkce, logaritmické funkce). (50 min.) - Funkce zadané parametricky. Polynom. (50 min.)

3. Racionální funkce. (50 min.) - Posloupnost a její limita. (50 min.)
Cv. Rozřazovací test. (50 min.) - Polynom, znaménko polynomu. (50 min.)

4. Limita a spojitost funkce, základní věty. (50 min.) - Derivace funkce, její geometrický a fyzikální význam, pravidla pro derivování. (50 min.)
Cv. Racionální funkce, znaménko racionální funkce, rozklad v parciální zlomky. (2x50 min.)

5. Derivace složené a inverzní funkce. (50 min.) - Diferenciál funkce. Rolleova a Lagrangeova věta. (50 min.)
Cv. Limita funkce. Derivace funkce (výpočet z definice) a její geometrický význam, procvičení základních vzorců a pravidel pro derivování. (2x50 min.)

6. Derivace vyšších řádů, diferenciály vyšších řádů. (50 min.) - Taylorova věta. (50 min.)
Cv. Derivace složené funkce. Procvičování základních vzorců a pravidel pro derivování, zjednodušování výsledků derivování. (2x50 min.)

7. L`Hospitalovo pravidlo. Asymptoty grafu funkce. Průběh funkce. (2x50 min.)
Cv. Derivace vyšších řádů. Taylorova věta. (50 min.) L` Hospitalovo pravidlo. (50 min.)

8. Základy maticového počtu, elementární úpravy matice, hodnost matice. (50 min.) - Řešení soustav lineárních algebraických rovnic Gaussovou eliminační metodou. (50 min.)
Cv. Test I. (20 min.) Asymptoty grafu funkce. Průběh funkce. (80 min.)

9. Determinanty druhého řádu. Definice determinantů vyšších řádů pomocí Laplaceova rozvoje. (50 min.) - Pravidla pro počítání s determinanty. Cramerovo pravidlo pro řešení systému lineárních algebraických rovnic. (50 min.)
Cv. Základní operace s maticemi. Elementární úpravy matice, hodnost matice, řešení soustav lineárních algebraických rovnic Gaussovou eliminační metodou. (2x50 min.)

10. Inverzní matice. Jordanova metoda výpočtu. Maticové rovnice. (50 min.) - Reálný lineární prostor, báze a dimenze lineárního prostoru. Lineární prostory aritmetických a geometrických vektorů. (50 min.)
Cv. Výpočet determinantů užitím Laplaceova rozvoje a pravidel pro počítání s determinanty. (50 min.) Výpočet inverzní matice pro matice A(2,2), A(3,3) Jordanovou metodou -kalkul. (50 min.)

11. Vlastní čísla a vektory matice. (50 min.) - Souřadnice vektoru. Skalární a vektorový součin vektorů, počítání v souřadnicích. (50 min.)
Cv. Test II. (20 min.) Maticové rovnice. (40 min.) Vlastní čísla a vektory matice -kalkul. (40 min.)

12. Smíšený součin vektorů. Rovin

Učební cíle

Pochopit základní pojmy diferenciálního a integrálního počtu funkce jedné proměnné a geometrické interpretace některých pojmů. Zvládnout derivování a naučit se řešit úlohu průběhu funkce.
Schopnost počítat s maticemi, umět provádět elementární úpravy a vyčíslení determinantů, umět řešit soustavy lineárních algebraických rovnic, zvládnout Gaussovu eliminační metodu řešení soustav.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Základní literatura

BUDÍNSKÝ, B. - CHARVÁT, J.: Matematika I. Praha, SNTL, 1987. (CS)
LARSON, R.- HOSTETLER, R.P.- EDWARDS, B.H.: Calculus (with Analytic Geometry). Brooks Cole, 2005. (EN)
STEIN, S. K: Calculus and analytic geometry. New York, 1989. (EN)

Doporučená literatura

DANĚČEK, J. a kolektiv: Sbírka příkladů z matematiky I. CERM, 2003. (CS)
DLOUHÝ, O., TRYHUK, V.: Diferenciální počet I. CERM, 2009. (CS)
kolektiv: Elektronické studijní opory. FAST VUT, 2004. [https://intranet.fce.vutbr.cz/pedagog/predmety/opory.asp] (CS)
NOVOTNÝ, J.: Základy lineární algebry. CERM, 2004. (CS)
TRYHUK, V. - DLOUHÝ, O.: Modul GA01_M01 studijních opor předmětu GA01. FAST VUT, Brno, 2004. [https://intranet.fce.vutbr.cz/pedagog/predmety/opory.asp] (CS)

Zařazení předmětu ve studijních plánech

  • Program B-P-E-SI bakalářský

    obor VS , 1 ročník, zimní semestr, povinný

  • Program B-K-C-SI bakalářský

    obor VS , 1 ročník, zimní semestr, povinný

  • Program B-P-C-SI bakalářský

    obor VS , 1 ročník, zimní semestr, povinný

  • Program B-P-C-ST bakalářský

    obor VS , 1 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení

26 hod., nepovinná

Vyučující / Lektor