studijní program

Teoretická elektrotechnika

Fakulta: FEKTZkratka: DKC-TEEAk. rok: 2020/2021

Typ studijního programu: doktorský

Kód studijního programu: P0714D060005

Udělovaný titul: Ph.D.

Jazyk výuky: čeština

Akreditace: 28.5.2019 - 27.5.2029

Forma studia

Kombinované studium

Standardní doba studia

4 roky

Garant programu

Oborová rada

Předseda :
doc. Ing. Petr Drexler, Ph.D.
Člen interní :
doc. RNDr. Martin Kovár, Ph.D.
prof. Ing. Karel Bartušek, DrSc.
prof. Ing. Lubomír Brančík, CSc.
doc. RNDr. Dana Hliněná, Ph.D.
doc. Ing. Jan Mikulka, Ph.D.
Člen externí :
prof. Ing. Jan Macháč, DrSc.
prof. RNDr. Martin Knor, Ph.D.
prof. RNDr. Ondřej Kalenda, Ph.D.

Oblasti vzdělávání

Oblast Téma Podíl [%]
Elektrotechnika Bez tematického okruhu 100

Cíle studia

Doktorský studijní program "Teoretická elektrotechnika" je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů v různých oblastech teoretické elektrotechniky. Zejména v teorii a aplikacích elektromagnetismu, elektrických obvodů, v metodách elektro/magnetických měření a metodách zpracování signálů. Příprava je podpořena poskytnutím znalostí v souvisejících matematických disciplínách, jakými jsou problematika stochastických procesů a statistických metod vyšetřování zkoumaných systémů, analýza systémů pomocí funkcionálních rovnic, návrh multikriteriálních optimalizačních metod, numerických metod řešení spojitých a diskrétních dynamických systémů a dalších. Cílem programu je poskytnout ve všech těchto dílčích zaměřeních doktorské vzdělání absolventům vysokoškolského magisterského studia, prohloubit jejich teoretické znalosti a rozvíjet spojené praktické odborné dovednosti a naučit je metodám vědecké práce.

Profil absolventa

Absolventi doktorského studia v programu "Teoretická elektrotechnika" umí řešit vědecké a složité technické inovační úlohy v oblasti elektrotechniky. A to v teoretické rovině a také při jejím praktickém nasazení ve výzkumu, vývoji a výrobě. Pro řešení technických výzkumných a vývojových úloh jsou vybaveni komplexními znalostmi z teorie a aplikací elektromagnetického pole, elektrických obvodů, metod měření veličin a zpracování signálů a jejich fyzikálním a matematickým popisem. Jsou schopni tvůrčím způsobem využívat moderní výpočetní, měřicí a diagnostickou techniku.
Díky kvalitnímu rozvinutému teoretickému vzdělání, odborným praktickým dovednostem a specializaci ve vybraném oboru jsou absolventi doktorského studia vyhledáváni jako specialisté a řídící pracovníci v oblasti obecné elektrotechniky. Uplatní se jako vědečtí, výzkumní a řídící pracovníci v základním či aplikovaném výzkumu, jako specializovaní odborníci a vedoucí týmů vývoje, konstrukce a provozu ve výzkumných a vývojových institucích a elektrotechnických a elektronických výrobních společnostech působících v oblasti pokročilých technologií.

Charakteristika profesí

Specialisté a řídící pracovníci v oblasti obecné elektrotechniky, vědečtí, výzkumní a řídící pracovníci v základním či aplikovaném výzkumu, specializovaní odborníci a vedoucí týmů vývoje, konstrukce a provozu ve výzkumných a vývojových institucích a elektrotechnických a elektronických výrobních společnostech působících v oblasti pokročilých technologií

Podmínky splnění

Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. V individuálním studijním plánu jsou specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění.
Student si zapíše a vykoná zkoušky z povinných předmětů Numerické úlohy s parciálními diferenciálními rovnicemi a Zkouška z angličtiny před státní doktorskou zkoušku, minimálně dvou povinně volitelných předmětů ohledem na zaměření jeho disertační práce, a dále minimálně dvou volitelných předmětů (Angličtina pro doktorandy, Řešení inovačních zadání, Vědecké publikování od A do Z, Citování ve vědecké praxi).
Ke státní doktorské zkoušce se může student přihlásit až po vykonání všech zkoušek předepsaných jeho individuálním studijním plánem. Před státní doktorskou zkouškou student vypracuje pojednání k disertační práci, v němž detailně popíše cíle práce, důkladné zhodnocení stavu poznání v oblasti řešené disertace, případně charakteristiku metod, které hodlá při řešení uplatňovat.
Obhajoba pojednání, které je oponováno, je součástí státní doktorské zkoušky. V další části zkoušky musí student prokázat hluboké teoretické i praktické znalosti v oblasti elektrotechniky, elektromagnetismu, teorie obvodů, metod měření elektrických a jiných fyzikálních veličin, zpracování a analýzy signálů a matematického modelování technických procesů. Státní doktorská zkouška probíhá ústní formou a kromě diskuze nad pojednáním k disertačním práce se také skládá z tematických okruhů týkajících se povinných a povinně volitelných předmětů.
K obhajobě disertační práce se student hlásí po vykonání státní doktorské zkoušky a po splnění podmínek pro ukončení, jakými jsou účast na výuce, vědecká a odborná činnost (tvůrčí činnost), a minimálně měsíční studijní nebo pracovní stáž na zahraniční instituci anebo účasti na mezinárodním tvůrčím projektu.

Vytváření studijních plánů

Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení.
Během prvních čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce.
Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka.
Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce.
Doktorandi ve čtvrtém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci doktorand odevzdává do konce 4. roku studia.
Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.

Vypsaná témata doktorského studijního programu

  1. Analýza metod pro rekonstrukci obrazu v EIT

    Cílem práce je analýza matematických modelů pro rekonstrukci obrazu elektrické impedanční tomografie z pohledu aplikovatelnosti na jednotlivé inženýrské obory (chemický průmysl, geologie, materiálové inženýrství a diagnostika, apod.). Výstupem práce bude teoretický rozbor a optimalizace limitujících faktorů metod při řešení vybraných technických úloh včetně vyhodnocení nejistot měření (měrná konduktivita a poloha nehomogenit), výpočetní náročnosti, apod.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  2. Aplikace vysoce dvojlomných optických vláken pro snímání fyzikálních veličin

    Moderní typy optických vláken umožňují aplikace optovláknových snímačů v oblastech, kde klasické snímače nelze jednoduše použít. Příkladem je snímání elektrických proudů nebo magnetických polí, které mohou dosahovat extrémních hodnot nebo snímání v prostředí, kde silně působí nežádoucí vlivy. Pro potlačení nežádoucího působení vnějších vlivů je možné použít speciální typy vláken s výrazným dvojlomem. Ty potenciálně umožňují konstrukci robustních snímačů s minimalizovanou citlivostí na vnější vlivy. Disertační práce bude zaměřena na výzkum a vývoj metod snímání elektromagnetických veličin s využitím vysoce dvojlomných vláken.

    Školitel: Drexler Petr, doc. Ing., Ph.D.

  3. Detekce a klasifikace pohybujících se objektů

    Práce je zaměřena na testování a vývoj algoritmů pro detekci pohybujících se objektů. Tyto algoritmy by měly umět detekovat a rozpoznat vybrané typy objektů, které by se mohly objevit v prostorách se zvýšenou mírou bezpečnosti, jako jsou například letiště, jaderné elektrárny a muniční sklady. Na základě detekovaného nežádoucího typu letícího tělesa bude potřeba navrhnout možnosti jeho zneškodnění.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  4. Elektromagnetické vlastnosti grafenu

    Téma práce je zaměřeno na výzkum, popis, modelování a experimentální ověření elektromagnetických vlastností grafenových struktur, jak monoatomární vrstvy tak vícevrstvých struktur. Cílem práce je zejména pomocí numerického modelu popsat očekávané vlastnosti vzorku grafenové struktury, popsat a nastavit experiment pro ověření vybraných vlastnsotí takové struktury. Na realizovaném vzorku provést řadu experimentů, které by sledované parametry popsaly a bylo je tak možné srovnat s teoreticky získanými.

    Školitel: Fiala Pavel, prof. Ing., Ph.D.

  5. Minimalizace susceptibilních artefaktů v medicínských obrazech

    Práce bude zaměřena na výzkum metod pro minimalizaci artefaktů, které vznikají vlivem rozdílných hodnot magnetické susceptibility tkání či materiálů při zobrazování v medicíně. Například v oblasti zubních implantátů dochází v jejich okolí ke ztrátě MR signálu. Cílem je tyto artefakty minimalizovat.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  6. Modelování a rekonstrukce obrazu v EIT pomocí IEM-FEM

    Cílem disertační práce je tvorba modelu IEM-FEM (In/Finite Elements Method) pro rekonstrukci obrazu v elektrické impedanční tomografii. Tento způsob modelování je aplikovatelný v oblasti geologie (monitorování vodních nádrží, permafrostu, apod.). Výstupem práce by měly být přesnější výsledky, které budou na základě rekonstruovaného obrazu reálněji popisovat měrnou konduktivitu uvnitř systému v porovnaní s FEM. Celá metodika bude ověřena experimentálně v laboratorním i reálném prostředí.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  7. Moderní metody zpracování obrazů elektronové mikroskopie

    Cílem disertační práce bude rozvoj metod rekonstrukce obrazů elektronové mikroskopie. Důraz bude kladen na detailní zvýrazňování snímaných struktur, potlačování obrazového šumu, optimalizaci metod pro zpracování obrazů na základě parametrů elektronové mikroskopie. V případě časové náročnosti algoritmů bude část práce zaměřená na paralelizaci výpočtů. Předpokládá se spolupráce se společností TESCAN Brno, s.r.o.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  8. Multispektrální zobrazování rostlin

    Cílem práce je výzkum a testování metod pro vyhodnocení snímků z multispektrální kamery. Součástí práce je sběr velkého množství dat pomocí bezpilotního letounu a také návrh vhodných metod pro zpracování obrazů, které budou využity pro korelaci s laboratorními vzorky snímaných rostlin. Výsledkem by měly být mimo jiné příslušné aplikační mapy.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  9. Numerické metody řešení frakcionálních kontrolních sytémů

    Cílem disertace je modifikace numerické semi-analytické metody založené na Adomianově dekompoziční metodě a integrálních transformací pro řešení počátečních úloh frakcionálních kontrolních systémů ve smyslu Caputovy frakcionální derivace. Rovněž bude vyšetřována konvergenční analýza navržené metody.

    Školitel: Šmarda Zdeněk, doc. RNDr., CSc.

  10. Optovláknové snímání elektromagnetických přechodových dějů

    Využití magnetooptického jevu v optických vláknech je atraktivní možností pro konstrukci snímačů magnetických polí a elektrických proudů. Jejich nasazení je zajímavé zejména v případě měření silných magnetických polí, respektive proudů dosahujících hodnot v oblasti jednotek kiloampérů až desítek megaampérů. V této souvislosti je vysoce potenciální jejich aplikace v diagnostice plazmatických výbojů v budoucích fúzních reaktorech. Pro úspěšné nasazení těchto snímačů je velmi žádoucí disponovat možnostmi jejich testování při vývoji. Řada prací se již problematikou měření vlastností snímačů zabývala. Doposud ale nebyla věnována potřebná pozornost možnosti testování dynamických vlastností snímačů pro přechodné děje v nanosekundové a sub-nanosekundové oblasti. A to spolu s magnetickými poli indukovanými proudy o hodnotě jednotek kiloampérů a výše. Dizertační práce se bude věnovat výzkumu vlastností a testování senzorů v nano a sub-nanosekundové oblasti. Předpokládá se vlastní návrh a vývoj unikátního testovacího zařízení.

    Školitel: Drexler Petr, doc. Ing., Ph.D.

  11. Pokročilé metody nízkoúrovňových měření

    Jedním z cílů disertační práce bude optimalizovat stávající aparaturu na měření vzdušných iontů a navrhnout nové metody pro rychlé určení jejich spektra pohyblivosti. Použitelnost nové aparatury bude v prostředí s vysokou vlhkostí, prašností i nežádoucím hmyzem a hlubokým mrazem. Následně budou provedeny unikátní aplikace měření s navrženou aparaturou, které povedou k lepšímu pochopení atmosférické elektřiny země. Kromě studia atmosférické elektřiny se bude výzkum zaměřovat i na uzavřené interiéry, kde je nutné dosáhnout maximální citlivosti při minimálním objemovém průtoku vzduchu. Bude se zkoumat vliv cigaretového kouře, rostlin na vzdušné ionty. Obdobně bude probíhat výzkum i v experimentálním lese. Mimo vzdušné ionty se bude vrámci disertační práce možné zaměřovat na korelaci s ostatními mikroklimatickými prvky uzavřených systémů, například jeskyní. Jedná se o dlouhodobé měření CO2, relativní vlhkosti,proudění vzduchu a následný systém umožňující komplexní měření těchto veličin v jeskyni.

    Školitel: Roubal Zdeněk, Ing., Ph.D.

  12. Pokročilé metody radiofrekvenční detekce částečných výbojů

    Jedním z klíčových problémů spolehlivosti výkonových vysokonapěťových transformátorů je existence částečných výbojů v jejich olejové náplni. Radiofrekvenční metody mohou poskytnout účinný nástroj pro sledování aktivity částečných výbojů. Pro jejich úspěšné nasazení je stěžejní možnost detekce elektromagnetického signálu v pásmu UKV vyzařovaného výbojem. Tento signál má relativně nízkou úroveň a jeho výskyt je doprovázen silným impulzním rušením z jiných výbojových dějů. Na druhou stranu signál disponuje specifickými časovými a kmitočtovými relacemi, které mohou umožnit jeho spolehlivou detekci a vyhodnocení. Téma je zaměřeno na výzkum nového přístupu k detekci elektromagnetických signálů vyzařovaných částečnými výboji, který bude využívat jejich časových a kmitočtových specifik. Cílem práce je prohloubit stav poznání v problematice spolehlivé detekce a identifikace aktivity částečného výboje a zvýšení spolehlivosti provozu výkonových vysokonapěťových transformátorů.

    Školitel: Drexler Petr, doc. Ing., Ph.D.

  13. Polarizační optická reflektometrie pro měření plazmového proudu fúzních reaktorů

    V současných a budoucích fúzních reaktorech dosahuje hodnota plazmového proudu megaampérových hodnot. Vhodnou metodou pro měření jeho velikosti a také stability je polarizační optická reflektometrie v časové oblasti (POTDR). Budoucí velké reaktory budou disponovat výbojovou komorou s nekruhovým průřezem což umožní snažší dosažení stability fúzní reakce. Nevýhodou je komplikovanější metoda analýzy POTDR náměrů kvůli nehomogenitě pole v okolí reaktoru. Dizertační práce se bude zabývat návrhem nových možností zpracování POTDR náměrů, které umožní stanovit velikost plazmového proudu s ohledem na reálné podmínky měření.

    Školitel: Drexler Petr, doc. Ing., Ph.D.

  14. Prostorová analýza silového zatížení deformované rostoucí páteře a využití modelování korekčních sil k minimalizaci rozsahu operace skoliózy

    Deformita páteře v dětském věku (skolióza) je onemocnění, jehož průběh v čase nelze předvídat. Výsledky konzervativní terapie jsou pochybné a při určitém stupni zakřivení je nutné přistoupit k operační léčbě s rizikem opakovaných reoperací a komplikací. V současné době používaný systém rostoucích tyčí a usměrňovaného růstu zasahuje průměrně 9 segmentů páteře, tyto se stávají nepohyblivé a mají vliv na přetížení zbývajících volných segmentů pod fúzí, což se projeví časnějším výskytem degenerativních změn, bolestmi zad v dospělosti, omezenou pohybovou aktivitou a poškozením muskuloskeletálního systému. Podstatou doktorského práce je navržení nové metodiky pro minimalizaci nežádoucích dopadů operační léčby progredující deformity páteře na dětech pomocí 3D modelování rozložení mechanických napětí v prostorové simulaci plánovaného zákroku. Do projektu budou zařazeni pacienti s idiopatickou, symptomatologickou a kongenitální skoliózou progredující přes konzervativní terapii, kteří by museli podstoupit jednu z uvedených metod operační terapie. Cílem práce je návrh unikátního operačního řešení korekce idiopatické, sypmtomatologické a kongenitální deformity osteotomií jednoho obratle bez negativních vlivů na okolní segmenty páteře pomocí 3D modelování zatížení se snahou o predikci vývoje páteře a sledování regenerace intervertebrálních plotének na MRI. Práce bude řešena ve spolupráci s fakultní nemocnicí v Brně Bohunicích.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  15. Rychlá rekonstrukce obrazů elektrické impedanční tomografie

    Cílem disertační práce bude rozvoj metod rekonstrukce obrazů elektrické impedanční tomografie. Důraz bude kladen jak na metody měření signálů s nízkým SNR, tak na zpracování signálů a rekonstrukci impedance uvnitř zkoumaných objektů. Jelikož s rostoucím počtem elektrod a jemnější FEM sítí dochází k rapidnímu zvyšování výpočetní náročnosti, bude navázáno na dosavadní činnost ústavu zaměřenou na řešení inverzních úloh a paralelizaci výpočtů na grafických kartách.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  16. Řízení dronu na základě algoritmů umělé inteligence

    Práce je zaměřena na vývoj metod strojového učení a jejich testování za účelem autonomního řízení dronu. Pro správnou volbu řídicích signálů je nutné zpracovávat obrazová data v reálném čase. Algoritmy tedy musí pracovat rychle a adaptabilně.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  17. Studium přenosu tepla turbulentním prouděním v studeném héliovém plynu v experimentu s Rayleigh-Bénardovou konvekcí

    Turbulentní proudění jsou v přírodě téměř všudypřítomné (představte si leteckou dopravu, testovaní aut v aerodynamickém tunelu, nebo v případě velké fantazie výbuchy supernov, či dynamiku kvantových vírů v supratekutém héliu za teplot blízko absolutní nuly). Jednou z jejich zásadních vlastností je posílení schopnosti vrstvy tekutiny přenášet teplo: Pro představu – v atmosférické mezní vrstvě vysoké 1km turbulentní přenos tepla stoupne aspoň o 5 řádů v porovnání s molekulární difuzí v stojatém vzduchu. Detailní pochopení těchto procesů má zjevný význam např. pro pochopení zemského klimatu nebo důležitých technologických aplikací jako procesů v chladících částech jaderných reaktorů nebo pro úschovu obnovitelné energie v bateriích na bázi tekutých kovů. Turbulentní přenos tepla je možno modelovat a studovat v laboratorních podmínkách, jenomže i nejpokročilejší současné experimenty s vysoce intenzivní turbulencí (příbližující se např. intenzitě turbulence v atmosféře), jako experiment s Rayleigh-Bénardovou konvekcí (RBC) v kryogenním héliovém plynu realizovaný v naší laboratoři na Ústavu přístrojové techniky (ÚPT) AV v Brně vykazují tzv. ne-Oberbeck-Boussinskovské (NOB) efekty v důsledku teplotně a tlakově závislých vlastností pracovních tekutin, jako hustota, viskozita nebo tepelní vodivost. NOB efekty nejsou dosud dostatečně pochopeny, protože i nejdetailnější numerické simulace pracují s konstantními vlastnostmi tekutin, což omezuje pochopení reálných dějů v přírodě na velkých prostorových škálách. Ve spolupráci se skupinou prof. J. Schumachera na TU Ilmenau v Německu pracujeme na nových efektivních numerických programech zahrnujících NOB efekty a plánujeme systematické a detailní porovnávání s kryogenními experimenty na ÚPT v Brně. Student/ka se do hloubky seznámí s turbulentními prouděními a bude mít možnost sbírat, analyzovat a porovnávat data se dvou odlišných zdrojů – kryogenního experimentu v Brně a masivně paralelních výpočtů v Ilmenau. Může se také podílet na návrzích a sestavení elektroniky a aparatur na sběr dat v upgradovaných aparaturách na ÚPT Brno. Interpretace dat proběhne také ve spolupráci s prof. L. Skrbkem na MFF UK v Praze a prof. K. Sreenivasanem na New York University, USA.

    Školitel: Drexler Petr, doc. Ing., Ph.D.

  18. Teorie nelineární akustiky ve spojení s nehomogenními lokálně periodickými strukturami

    Nelineární akustika je relativně moderní výzkumnou disciplínou. Zabývá se šířením akustických vln v nelineárním prostředí, modelováním parametrického akustického pole a souvisejícími aplikacemi. Jedním z problémů, které je potřeba v současné době řešit je analytický popis nelineárního prostředí, případně jeho numerické modelování. Dalším směrem v této oblasti je návrh nehomogenních lokálně periodických struktur, pomocí kterých jsme schopni zacílit akustické vlny do svazku, vytvářet nelineární prvky je např. akustická dioda apod. Aplikačním odvětvím této výzkumné oblasti pak může být např. bezkontaktní testování materiálů. V rámci disertační práce se bude student věnovat popisu a analýze amplitudově modulovaných akustických vln konečných amplitud a analýze parametricky buzených akustických polí. Cílem práce je dále prohloubení stavu poznání v problematice nelineárních akustických interakcí v tekutinách s využitím nehomogenních periodických struktur, metod zpracování vstupních signálu a modulace nosných vln.

    Školitel: Mikulka Jan, doc. Ing., Ph.D.

  19. Vizualizace kvantových a klasických proudění supratekutého a plynného hélia metodou laserem indukované fluorescence dlouho žijícího excimeru He2*

    Turbulentní proudění jsou v přírodě téměř všudypřítomné (představte si leteckou dopravu, testovaní aut v aerodynamickém tunelu, nebo v případě velké fantazie výbuchy supernov, či dynamiku kvantových vírů v supratekutém héliu za teplot blízko absolutní nuly). Jednou z jejich zásadních vlastností je posílení schopnosti vrstvy tekutiny přenášet teplo: Pro představu – v atmosférické mezní vrstvě vysoké 1km turbulentní přenos tepla stoupne aspoň o 5 řádů v porovnání s molekulární difuzí v stojatém vzduchu. Detailní pochopení těchto procesů má zjevný význam např. pro pochopení zemského klimatu nebo důležitých technologických aplikací jako procesů v chladících částech jaderných reaktorů nebo pro úschovu obnovitelné energie v bateriích na bázi tekutých kovů. Turbulentní přenos tepla je možno modelovat a studovat v laboratorních podmínkách, jenomže i nejpokročilejší současné experimenty s vysoce intenzivní turbulencí (přibližující se např. intenzitě turbulence v atmosféře), jako experiment s Rayleigh-Bénardovou konvekcí (RBC) v kryogenním héliovém plynu realizovaný v naší laboratoři na Ústavu přístrojové techniky (ÚPT) AV v Brně jsou omezeny na měření turbulentních teplotních fluktuací a postrádají vhodnou zobrazovací metodu, která by umožnila přímo měřit rychlostní pole proudění. Ve spolupráci se skupinou prof. W. Gua z National High-Magnetic Field Laboratory na Floridě, kteří aplikují novou a průlomovou metodu užívající laserem indukovanou fluorescenci (LIF) extrémně dlouho žijícího molekulárního excimeru He2* hélia 4 v režimu supratekuté kvantové turbulence, plánujeme vyvinout aparaturu pro vizualizaci klasických turbulentních proudění v RBC v héliovém plynu za nízkých teplot. Práce PhD studenta/ky nabízí možnost měření a analýzy velkých souborů dat z přípravných experimentů na Floridě a/nebo spolupráce na návrhu nové aparatury, kterou plánujeme postavit na ÚPT v Brně. Student/ka se přitom do hloubky seznámí s fascinující dynamikou klasických a kvantových proudění. Může se také podílet návrhu a sestavení elektroniky a aparatury na řízení experimentů a sběr dat.

    Školitel: Drexler Petr, doc. Ing., Ph.D.

  20. Výzkum vlastností a aplikací šumových elektromagnetických polí

    Měřicí a diagnostické metody založené na využití vyzařovaného elektromagnetického (EM) pole a jeho interakce s testovanými objekty jsou v současné době dobře zvládnutou a široce využívanou technologií. Ovšem naprostá většina systémů založených na zmíněném přístupu používá koncept, kdy je generováno a vyhodnocováno EM pole s definovaným kmitočtem, resp. je tento kmitočet řízeně rozmítán. V tomto případě je nutno brát v úvahu možnost reaktančních vazeb měřeného a měřicího objektu v blízké oblasti, které mohou měření znehodnotit. Naopak, pokud by byly pro diagnostiku použity širokopásmové stochastické signály (šumové signály), bylo by možno tyto vazby potlačit. Téma studia je zaměřeno na výzkum využití konceptu diagnosticky materiálů a elektromagnetických struktur šumovým polem, především v radiofrekvenční a mikrovlnné oblasti, jeho rozvoj a experimentální ověření.

    Školitel: Drexler Petr, doc. Ing., Ph.D.

  21. Zvýšení bezpečnosti vnitřního perimetru

    Prostudujte možnosti zdokonalení bezpečnosti vnitřního perimetru prostor s vyšší mírou bezpečnostního rizika, či hranic státu. Navrhněte automatizovaný systém, který pomůže zvýšenou mírou jistoty zabezpečit prostory s náročnějšími požadavky na eliminaci bezpečnostního rizika.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

1. kolo (podání přihlášek od 01.04.2020 do 15.05.2020)

  1. Plasma a její numerické modely

    Práce je zaměřena na teoretické odvození numerických modelů založených na řešení PDR pro modelování plazma a výbojových aktivit. Přístup bude využívat jak stochastických metod, tak deterministických pro nalezení a formulaci odpovídajících numerických modelů plazmového výboje v komorách s nehomogenním prostředím plynů a prekurzorů. Navazuje na výzkum a modifikaci modelu na bázi metody konečných prvků, konečných objemů, hraničních prvků pro statické i dynamické modely formulované pomocí parciálních diferenciálních rovnic. Cílem práce je navrhnout numerický model jako silný nástroj pro analýzu a popis vlastností specifického uspořádání komory určené pro generování plazma a její geometrie na atomární a subatomární úrovni, verifikace na jednoduchém ověřitelném příkladu. Analýzy budou ověřeny experimentem, výzkum bude směřovat k nalezení parametrů takto vzniklého numerického modelu a porovnat s požadavky kladenými na modely určené pro dynamiku elektrického výboje a vyhodnotí zadané parametry. Téma je součástí grantu a výzkumu ústavu.

    Školitel: Fiala Pavel, prof. Ing., Ph.D.

  2. Rojové létání a koordinace systémů s více drony

    Práce je zaměřena na vývoj a testování metod umělé inteligence pro aplikaci v bezpilotních letounech. Důležitým parametrem je vzájemná komunikace dronů zajišťující jejich koordinaci v prostoru a řešení případných kolizí. Z hlediska hardwaru s tím souvisí vhodná volba senzorového vybavení pro bezpilotní letouny a současně návrh, realizace a testování sofistikovaných metod strojového učení.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  3. Strojové učení pro klasifikaci obrazových dat

    Práce je zaměřena na testování a vývoj algoritmů strojového učení pro klasifikaci obrazových dat. Dílčí úkoly zahrnují zpracování získaných fotometrických map a 3D modelů, klasifikaci a trénování algoritmů založených na geometrii a přiřazení sémantických informací k objektům.

    Školitel: Marcoň Petr, doc. Ing., Ph.D.

  4. Úpravy povrchů plazmatickým výbojem v technice VN

    Cílem práce je souhrn výzkumných aktivit v oblasti teoretického popisu a modelování vlivu plazmatického výboje na povrchy vybraných VN přístrojů, které by měly vykazovat po úpravě specifické elektrické vlastnosti. Vlastnosti povrchů jsou dány makro , mikro a nanoskopickým stavem povrchu dielektrického materiálu, eventuálně upraveného pomocí prekurzorů anorganického nebo organického charakteru. Plazmaticky upravený povrch bude vykazovat změněné vlastnosti z oblasti zejména přeskovových vzdáleností na rozhraní povrchu ve vzduchu nebo při styku s dalším pevným materiálem při kritické hodnotě elektrické intenzity elektrického pole. Práce se bude zabývat jak teoretickým popisem očekávaných jevů, tak numerických modelů a jejich analýz s částí, ve které se budou modely a analýzy verifikovat experimentálně.

    Školitel: Fiala Pavel, prof. Ing., Ph.D.

Struktura předmětů s uvedením ECTS kreditů (studijní plán)

Libovolný ročník, zimní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DKC-ET1Elektrotechnické materiály, materiálové soustavy a výrobní procesycs4Povinně volitelnýdrzkS - 39ano
DKC-EE1Matematické modelování v elektroenergeticecs4Povinně volitelnýdrzkS - 39ano
DKC-ME1Moderní mikroelektronické systémycs4Povinně volitelnýdrzkS - 39ano
DKC-RE1Návrh moderních elektronických obvodůcs4Povinně volitelnýdrzkS - 39ano
DKC-TK1Optimalizační metody a teorie hromadné obsluhycs4Povinně volitelnýdrzkS - 39ano
DKC-FY1Rozhraní a nanostrukturycs4Povinně volitelnýdrzkS - 39ano
DKC-TE1Speciální měřicí metodycs4Povinně volitelnýdrzkS - 39ano
DKC-MA1Statistika. stochastické procesy, operační výzkumcs4Povinně volitelnýdrzkS - 39ano
DKC-AM1Vybrané kapitoly řídicí technikycs4Povinně volitelnýdrzkS - 39ano
DKC-VE1Vybrané statě z výkonové elektroniky a elektrických pohonůcs4Povinně volitelnýdrzkS - 39ano
DKC-JA6Angličtina pro doktorandycs4VolitelnýdrzkCj - 26ano
DKC-RIZŘešení inovačních zadánícs2VolitelnýdrzkS - 39ano
DKC-EIZVědecké publikování od A do Zcs2VolitelnýdrzkS - 26ano
Libovolný ročník, letní semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DKC-TE2Numerické úlohy s parciálními diferenciálními rovnicemics4PovinnýdrzkS - 39ano
DKC-TK2Aplikovaná kryptografiecs4Povinně volitelnýdrzkS - 39ano
DKC-MA2Diskrétní procesy v elektrotechnicecs4Povinně volitelnýdrzkS - 39ano
DKC-ME2Mikroelektronické technologiecs4Povinně volitelnýdrzkS - 39ano
DKC-RE2Moderní digitální bezdrátová komunikacecs4Povinně volitelnýdrzkS - 39ano
DKC-EE2Nové trendy a technologie výroby energiecs4Povinně volitelnýdrzkS - 39ano
DKC-FY2Spektroskopické metody pro nedestruktivní diagnostikucs4Povinně volitelnýdrzkS - 39ano
DKC-ET2Vybrané diagnostické metody, spolehlivost, jakostcs4Povinně volitelnýdrzkS - 39ano
DKC-AM2Vybrané kapitoly měřicí technikycs4Povinně volitelnýdrzkS - 39ano
DKC-VE2Vybrané statě z elektrických strojů a přístrojůcs4Povinně volitelnýdrzkS - 39ano
DKC-JA6Angličtina pro doktorandycs4VolitelnýdrzkCj - 26ano
DKC-CVPCitování ve vědecké praxics2VolitelnýdrzkP - 26ano
DKC-RIZŘešení inovačních zadánícs2VolitelnýdrzkS - 39ano
Libovolný ročník, celoroční semestr
ZkratkaNázevJ.Kr.Pov.Uk.Hod. rozsahSk.Ot.
DKC-QJAZkouška z angličtiny před státní doktorskou zkouškucs4PovinnýdrzkS - 3ano