Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VRÁBELOVÁ, P. ŠKODA, P. ZENDULKA, J.
Originální název
Wavelet Based Feature Extraction for Clustering of Be Stars
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
The goal of our work is to create a feature extraction method for classification of Be stars. Be stars are characterized by prominent emission lines in their spectrum. We focus on the automated classification of Be stars based on typical shapes of their emission lines. We aim to design a reduced, specific set of features characterizing and discriminating the shapes of Be lines. In this paper, we present a feature extraction method based on the wavelet transform and its power spectrum. Both the discrete and continuous wavelet transform are used. Different feature vectors are created and compared on clustering of Be stars spectra from the archive of the Astronomical Institute of the Academy of Sciences of the Czech Republic. The clustering is performed using the k- means algorithm. The results of our method are promising and encouraging to more detailed analysis.
Klíčová slova
Be star, feature extraction, wavelet transform, wavelet power spectrum
Autoři
VRÁBELOVÁ, P.; ŠKODA, P.; ZENDULKA, J.
Rok RIV
2013
Vydáno
31. 3. 2013
Nakladatel
Springer US
Místo
New York
ISBN
978-3-319-00541-6
Kniha
Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems
Edice
Volume 210 of Advances in Intelligent Systems and Computing
Strany od
467
Strany do
474
Strany počet
9
URL
http://link.springer.com/chapter/10.1007%2F978-3-319-00542-3_46
BibTex
@inproceedings{BUT106552, author="Pavla {Vrábelová} and Petr {Škoda} and Jaroslav {Zendulka}", title="Wavelet Based Feature Extraction for Clustering of Be Stars", booktitle="Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems", year="2013", series="Volume 210 of Advances in Intelligent Systems and Computing", pages="467--474", publisher="Springer US", address="New York", doi="10.1007/978-3-319-00542-3\{_}46", isbn="978-3-319-00541-6", url="http://link.springer.com/chapter/10.1007%2F978-3-319-00542-3_46" }