Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LEBEDA, A. PIVOŇKA, P.
Originální název
Comparison of Offline Identification Methods on Bounded AutoRegressive Polynomial Models
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper we focused on methods for offline identification of bounded autoregressive polynomials models. Firstly we used classical least square (LS) method for identification. Secondly we used total least square (TLS) method and thirdly we used gradient based method Levenberg-Marquardt for identification. Bounded AR polynomial models are basically nonlinear in parameters but the models can be modified to linear dependencies on parameters if bounding function is irreversible. Levenberg-Marquardt method was applied to unmodified bounded AR polynomial models. Input/Output data was generated from the model of isothermal continuous stirred-tank reactor with and without additive noise. Finally all methods are compared on one-step and multi-step predictions.
Klíčová slova
LS, TLS, nonlinear, polynomial, identification
Klíčová slova v angličtině
Autoři
LEBEDA, A.; PIVOŇKA, P.
Rok RIV
2014
Vydáno
28. 5. 2014
ISBN
978-1-4799-3527-7
Kniha
15th International Carpathian Control Conference - ICCC 2014
Strany od
301
Strany do
305
Strany počet
5
BibTex
@inproceedings{BUT107114, author="Aleš {Lebeda} and Petr {Pivoňka}", title="Comparison of Offline Identification Methods on Bounded AutoRegressive Polynomial Models", booktitle="15th International Carpathian Control Conference - ICCC 2014", year="2014", pages="301--305", isbn="978-1-4799-3527-7" }