Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PAPEŽ, M.
Originální název
On Bayesian Decision-Making and Approximation of Probability Densities
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
An approximation of a true, unknown, posterior probability density (pd) representing some real state-space systém is presented as Bayesian decision-making among a set of possible descriptions (models). The decision problem is carefully defined on its basic elements and it is shown how it leads to the use of the Kullback-Leibler (KL) divergence for evaluating a loss of information between the unknown posterior pd and its approximation. The resulting algorithm is derived on a general level, allowing specific algorithms to be designed according to a selected class of the probability distributions. A concrete example of the algorithm is proposed for the Gaussian case. An experiment is performed assuming that none of the possible descriptions is precisely identical with the unknown system.
Klíčová slova
Bayesian inference, Bayesian filtering, Bayesian decision-making, probability density, Kullback-Leibler divergence.
Autoři
Rok RIV
2015
Vydáno
9. 7. 2015
Nakladatel
Institute of Electrical and Electronics Engineers
Místo
Prague
ISBN
978-1-4799-8498-5
Kniha
38th International Conference on Telecommunications and Signal Processing (TSP)
ISSN
NEUVEDENO
Strany od
499
Strany do
503
Strany počet
5
URL
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7296313
BibTex
@inproceedings{BUT114323, author="Milan {Papež}", title="On Bayesian Decision-Making and Approximation of Probability Densities", booktitle="38th International Conference on Telecommunications and Signal Processing (TSP)", year="2015", pages="499--503", publisher="Institute of Electrical and Electronics Engineers", address="Prague", doi="10.1109/TSP.2015.7296313", isbn="978-1-4799-8498-5", url="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7296313" }