Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KARTCI, A.
Originální název
Optimization of multilayer perceptron training parameters using artificial bee colony and genetic algorithm
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, the momentum coefficient, learning rate, and the number of hidden neurons where the multilayer perceptron works best, are determined. The network and optimization algorithms are written in MATLAB, which was also successfully used to carry out results. To obtain the results, IRIS, mammographic_mass, and new_thyroid data sets have been used. Obtained results show that the determining effect on the neural learning process of parameters (momentum coefficient, learning rate, number of hidden neurons) are compatible with other approaches available in the literature. Both genetic algorithm (GA) and artificial bee colony (ABC) algorithm were successful on finding the values to get high performance as well as effect on performance of the population number.
Klíčová slova
Multilayer perceptron, artificial bee colony algorithm, genetic algorithm, training parameters optimization
Autoři
Rok RIV
2015
Vydáno
23. 4. 2015
Nakladatel
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
ISBN
978-80-214-5148-3
Kniha
Proceedings of the 21st Conference STUDENT EEICT 2015
Strany od
338
Strany do
340
Strany počet
3
BibTex
@inproceedings{BUT117521, author="Aslihan {Kartci}", title="Optimization of multilayer perceptron training parameters using artificial bee colony and genetic algorithm", booktitle="Proceedings of the 21st Conference STUDENT EEICT 2015", year="2015", pages="338--340", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5148-3" }