Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DOKOUPIL, J.; VÁCLAVEK, P.
Originální název
Bayesian change detection in the growing window recursive strategy
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
A novel growing-window recursive algorithm for stochastic system change detection is derived based on the Bayesian inference principle. Model based detectors can be formalized by two concepts in literature: (a) working in a sliding-window strategy because of time-dependent computational complexity, or (b) running in parallel, each one matched to a certain assumption on a change point. This motivates us to investigate a more refined approach which utilizes all relevant data to catch the next change point. The basic idea is to formulate a distance measure between two probabilities, one confirming the change occurrence and the other confirming no change in the system behavior. This study aims to solve the difficulty of sliding time arguments in the compared probabilities as new data are sequentially obtained. The outcome of this analysis is an algorithm that recognizes the time and magnitude of the change occurrence.
Anglický abstrakt
Klíčová slova
Bayesian inference, change point probabilities, multiple change points
Klíčová slova v angličtině
Autoři
Rok RIV
2016
Vydáno
21.07.2015
Nakladatel
Trans Tech Publications Ltd
Místo
Německo
ISBN
978-3-03835-499-4
Kniha
Applied mechanics and materials
ISSN
1660-9336
Periodikum
Applied Mechanics and Materials
Svazek
775
Stát
Švýcarská konfederace
Strany od
399
Strany do
403
Strany počet
4
URL
http://www.scientific.net/AMM.775.399
BibTex
@inproceedings{BUT117762, author="Jakub {Dokoupil} and Pavel {Václavek}", title="Bayesian change detection in the growing window recursive strategy", booktitle="Applied mechanics and materials", year="2015", journal="Applied Mechanics and Materials", volume="775", pages="399--403", publisher="Trans Tech Publications Ltd", address="Německo", doi="10.1063/1.4912383", isbn="978-3-03835-499-4", issn="1660-9336", url="http://www.scientific.net/AMM.775.399" }