Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVOSADOVÁ, M. RAJMIC, P.
Originální název
Piecewise-polynomial signal segmentation using proximal splitting convex optimization methods
Typ
prezentace, poster
Jazyk
angličtina
Originální abstrakt
We show how the problem of segmenting noisy piecewise polynomial signal can be formulated as a convex optimization task. Because the number of model changes in signal is considered low in comparison to the overall number of data points, we rely on the concept of sparsity and its convex-relaxed counterpart, the l1-norm. We present an unconstrained, overparametrized optimization formulation whose solution can be used for detecting the breakpoints, and for robust data denoising, in consequence. The problem is solved numerically by iterative proximal splitting methods.
Klíčová slova
Signal segmentation; sparsity; convex optimization
Autoři
NOVOSADOVÁ, M.; RAJMIC, P.
Vydáno
8. 6. 2016
Strany od
1
Strany do
14
Strany počet
URL
http://www.utko.feec.vutbr.cz/~rajmic/talks/APMOD_2016-Novosadova.pdf
BibTex
@misc{BUT127474, author="Michaela {Novosadová} and Pavel {Rajmic}", title="Piecewise-polynomial signal segmentation using proximal splitting convex optimization methods", year="2016", pages="1--14", url="http://www.utko.feec.vutbr.cz/~rajmic/talks/APMOD_2016-Novosadova.pdf", note="presentation, poster" }
Dokumenty
APMOD_2016-Novosadova.pdf