Detail publikačního výsledku

Visualization and analysis of stability regions of certain discretization of differential equation with constant delay

TOMÁŠEK, P.

Originální název

Visualization and analysis of stability regions of certain discretization of differential equation with constant delay

Anglický název

Visualization and analysis of stability regions of certain discretization of differential equation with constant delay

Druh

Článek WoS

Originální abstrakt

The paper discusses the asymptotic stability regions of multistep disretization of linear delay differential equation with a constant delay. Different location of delay dependent parts of stability regions with respect to parity of number of steps clarifies unexpected changes in numerical solution's behaviour under various settings of the equation's parameters and stepsize.

Anglický abstrakt

The paper discusses the asymptotic stability regions of multistep disretization of linear delay differential equation with a constant delay. Different location of delay dependent parts of stability regions with respect to parity of number of steps clarifies unexpected changes in numerical solution's behaviour under various settings of the equation's parameters and stepsize.

Klíčová slova

Delay differential equation; constant delay; difference equation; numerical solution; necessary and sufficient conditions for asymptotic stability

Klíčová slova v angličtině

Delay differential equation; constant delay; difference equation; numerical solution; necessary and sufficient conditions for asymptotic stability

Autoři

TOMÁŠEK, P.

Rok RIV

2018

Vydáno

08.12.2017

ISSN

1512-0015

Periodikum

Memoirs on Differential Equations and Mathematical Physics

Svazek

2017

Číslo

72

Stát

Gruzie

Strany od

131

Strany do

139

Strany počet

9

BibTex

@article{BUT140059,
  author="Petr {Tomášek}",
  title="Visualization and analysis of stability regions of certain discretization of differential equation with constant delay",
  journal="Memoirs on Differential Equations and Mathematical Physics",
  year="2017",
  volume="2017",
  number="72",
  pages="131--139",
  issn="1512-0015"
}