Detail publikačního výsledku

On asymptotic behaviour of solutions of a linear fractional differential equation with a variable coefficient

KISELA, T.

Originální název

On asymptotic behaviour of solutions of a linear fractional differential equation with a variable coefficient

Anglický název

On asymptotic behaviour of solutions of a linear fractional differential equation with a variable coefficient

Druh

Článek WoS

Originální abstrakt

The paper deals with qualitative analysis of solutions of a test linear differential equation involving variable coefficient and derivative of non-integer order. We formulate upper and lower estimates for these solutions depending on boundedness of the variable coefficient. In the special case of asymptotically constant coefficient, we present the sufficient (and nearly necessary) conditions for the convergence of solutions to zero.

Anglický abstrakt

The paper deals with qualitative analysis of solutions of a test linear differential equation involving variable coefficient and derivative of non-integer order. We formulate upper and lower estimates for these solutions depending on boundedness of the variable coefficient. In the special case of asymptotically constant coefficient, we present the sufficient (and nearly necessary) conditions for the convergence of solutions to zero.

Klíčová slova

fractional differential equation; variable coefficients; stability; asymptotic behaviour

Klíčová slova v angličtině

fractional differential equation; variable coefficients; stability; asymptotic behaviour

Autoři

KISELA, T.

Rok RIV

2018

Vydáno

08.12.2017

ISSN

1512-0015

Periodikum

Memoirs on Differential Equations and Mathematical Physics

Svazek

72

Číslo

1

Stát

Gruzie

Strany od

71

Strany do

78

Strany počet

8

BibTex

@article{BUT142560,
  author="Tomáš {Kisela}",
  title="On asymptotic behaviour of solutions of a linear fractional differential equation with a variable coefficient",
  journal="Memoirs on Differential Equations and Mathematical Physics",
  year="2017",
  volume="72",
  number="1",
  pages="71--78",
  issn="1512-0015"
}