Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŠLAPAL, J.
Originální název
A relational generalization of the Khalimsky topology
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
We discuss certain n-ary relations (n > 1 an integer) and show that each of them induces a connectedness on its underlying set. Of these n-ary relations, we study a particular one on the digital plane Z2 for every integer n > 1. As the main result, for each of the n-ary relations studied, we prove a digital analogue of the Jordan curve theorem for the induced connectedness. It follows that these n-ary relations may be used as convenient structures on the digital plane for the study of geometric properties of digital images. For n = 2, such a structure coincides with the (specialization order of the) Khalimsky topology and, for n > 2, it allows for a variety of Jordan curves richer than that provided by the Khalimsky topology.
Anglický abstrakt
Klíčová slova
n-ary relation, digital plane, Khalimsky topology, Jordan curve theorem
Klíčová slova v angličtině
Autoři
Rok RIV
2018
Vydáno
01.06.2017
Nakladatel
Springer
Místo
Switzerland
ISBN
978-3-319-59107-0
Kniha
Combinatorial Image Analysis
Edice
Lecture Notes in Computer Sciences
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Svazek
10256
Stát
Spolková republika Německo
Strany od
132
Strany do
141
Strany počet
10
BibTex
@inproceedings{BUT142992, author="Josef {Šlapal}", title="A relational generalization of the Khalimsky topology", booktitle="Combinatorial Image Analysis", year="2017", series="Lecture Notes in Computer Sciences", journal="Lecture Notes in Computer Science", volume="10256", number="10256", pages="132--141", publisher="Springer", address="Switzerland", doi="10.1007/978-3-319-59108-7\{_}11", isbn="978-3-319-59107-0", issn="0302-9743" }