Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
SENGAR, N.; DUTTA, M.; BURGET, R.;
Originální název
Detection of neuro mascular disease using EMG signals in wavelet domain
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Neuromuscular disorders affects the nerves which impairs the function of muscles. EMG signals are used to diagnose the different neuromuscular diseases. In this proposed method neuromuscular disease is detected by using different features in wavelet domain by using continuous wavelet transform and according to p-value score most discriminatory features were selected. Some features of EMG signals such as maximum amplitude and mean of amplitude, root mean square value are strategically quantified and classified by using support vector machine (SVM) classifier to automate the diagnosis of amyotrophic lateral sclerosis disease. The proposed method tested on EMG database created under EMG Lab, United States and results are encouraging which gives accuracy of 93.75%.
Anglický abstrakt
Klíčová slova
Electromyography; Diseases; Support vector machines; Neuromuscular; Continuous wavelet transforms
Klíčová slova v angličtině
Autoři
Rok RIV
2020
Vydáno
26.10.2017
Nakladatel
IEEE
Místo
Mathura, India, India
ISBN
978-1-5386-3004-4
Kniha
2017 IEEE Uttar Pradesh Section International Conference on Electrical
Strany od
624
Strany do
627
Strany počet
4
URL
https://ieeexplore.ieee.org/document/8251121
BibTex
@inproceedings{BUT144120, author="SENGAR, N. and DUTTA, M. and BURGET, R.", title="Detection of neuro mascular disease using EMG signals in wavelet domain", booktitle="2017 IEEE Uttar Pradesh Section International Conference on Electrical", year="2017", pages="624--627", publisher="IEEE", address="Mathura, India, India", doi="10.1109/UPCON.2017.8251121", isbn="978-1-5386-3004-4", url="https://ieeexplore.ieee.org/document/8251121" }