Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
GROCHOL, D. SEKANINA, L.
Originální název
Multiobjective Evolution of Hash Functions for High Speed Networks
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Hashing is a critical function in capturing and analysis of network flows as its quality and execution time influences the maximum throughput of network monitoring devices. In this paper, we propose a multi-objective linear genetic programming approach to evolve fast and high-quality hash functions for common processors. The search algorithm simultaneously optimizes the quality of hashing and the execution time. As it is very time consuming to obtain the real execution time for a candidate solution on a particular processor, the execution time is estimated in the fitness function. In order to demonstrate the superiority of the proposed approach, evolved hash functions are compared with hash functions available in the literature using real-world network data.
Klíčová slova
NSGA-II, linear genetic programming, hash function, network
Autoři
GROCHOL, D.; SEKANINA, L.
Vydáno
5. 6. 2017
Nakladatel
IEEE Computer Society
Místo
San Sebastian
ISBN
978-1-5090-4600-3
Kniha
Proceedings of the 2017 IEEE Congress on Evolutionary Computation
Strany od
1533
Strany do
1540
Strany počet
8
URL
https://www.fit.vut.cz/research/publication/11325/
BibTex
@inproceedings{BUT144407, author="David {Grochol} and Lukáš {Sekanina}", title="Multiobjective Evolution of Hash Functions for High Speed Networks", booktitle="Proceedings of the 2017 IEEE Congress on Evolutionary Computation", year="2017", pages="1533--1540", publisher="IEEE Computer Society", address="San Sebastian", doi="10.1109/CEC.2017.7969485", isbn="978-1-5090-4600-3", url="https://www.fit.vut.cz/research/publication/11325/" }