Detail publikace

Target Tracking Using a Distributed Particle-PDA Filter with Sparsity-promoting Likelihood Consensus

REPP, R. RAJMIC, P. MEYER, F. HLAWATSCH, F.

Originální název

Target Tracking Using a Distributed Particle-PDA Filter with Sparsity-promoting Likelihood Consensus

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

We propose a distributed particle-based probabilistic data association filter (PDAF) for target tracking in the presence of clutter and missed detections. The proposed PDAF employs a new “sparsity-promoting” likelihood consensus that uses the orthogonal matching pursuit for a sparse approximation of the local likelihood functions. Simulation results demonstrate that, compared to the conventional likelihood consensus based on least-squares approximation, large savings in intersensor communication can be obtained without compromising the tracking performance.

Klíčová slova

Distributed target tracking; sensor network; probabilistic data association; likelihood consensus; orthogonal matching pursuit

Autoři

REPP, R.; RAJMIC, P.; MEYER, F.; HLAWATSCH, F.

Vydáno

11. 6. 2018

Nakladatel

IEEE

Místo

Freiburg im Breisgau

ISBN

978-1-5386-1570-6

Kniha

Proceedings of the 2018 IEEE Statistical Signal Processing Workshop (SSP)

Strany od

653

Strany do

657

Strany počet

5

URL

BibTex

@inproceedings{BUT147019,
  author="Rene {Repp} and Pavel {Rajmic} and Florian {Meyer} and Franz {Hlawatsch}",
  title="Target Tracking Using a Distributed Particle-PDA Filter with Sparsity-promoting Likelihood Consensus",
  booktitle="Proceedings of the 2018 IEEE Statistical Signal Processing Workshop (SSP)",
  year="2018",
  pages="653--657",
  publisher="IEEE",
  address="Freiburg im Breisgau",
  doi="10.1109/SSP.2018.8450815",
  isbn="978-1-5386-1570-6",
  url="https://ieeexplore.ieee.org/document/8450815"
}