Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BOŠTÍK, O. KLEČKA, J.
Originální název
Recognition of CAPTCHA Characters by Supervised Machine Learning Algorithms
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The focus of this paper is to compare several common machine learning classication algorithms for Optical Character Recognition of CAPTCHA codes. The main part of a research focuses on the comparative study of Neural Networks, k-Nearest Neighbour, Support Vector Machines and Decision Trees implemented in MATLAB Computing environment. Achieved success rates of all analyzed algorithms overcome 89%. The main dierence in results of used algorithms is within the learning times. Based on the data found, it is possible to choose the right algorithm for the particular task.
Klíčová slova
CAPTCHA, OCR, Supervised Learning, Template Matching, Decision Trees, k-NN, SVM, Neural Network
Autoři
BOŠTÍK, O.; KLEČKA, J.
Vydáno
23. 4. 2018
Místo
Ostrava
ISSN
2405-8963
Periodikum
IFAC-PapersOnLine (ELSEVIER)
Ročník
2018
Číslo
15
Stát
Nizozemsko
Strany od
208
Strany do
213
Strany počet
6
BibTex
@inproceedings{BUT147094, author="Ondřej {Boštík} and Jan {Klečka}", title="Recognition of CAPTCHA Characters by Supervised Machine Learning Algorithms", booktitle="15th IFAC Conference on Programmable Devices and Embedded Systems - PDeS 2018", year="2018", journal="IFAC-PapersOnLine (ELSEVIER)", volume="2018", number="15", pages="208--213", address="Ostrava", doi="10.1016/j.ifacol.2018.07.155", issn="2405-8963" }