Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOLAŘÍK, M. BURGET, R. UHER, V. DUTTA, M.
Originální název
3D Dense-U-Net for MRI brain tissue segmentation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents a fully automatic method for 3D segmentation of brain tissue on MRI scans using modern deep learning approach and proposes 3D Dense-U-Net neural network architecture using densely connected layers. In contrast with many previous methods, our approach is capable of precise segmentation without any preprocessing of the input image and achieved accuracy 99.70 percent on testing data which outperformed human expert results. The architecture proposed in this paper can also be easily applied to any project already using U-net network as a segmentation algorithm to enhance its results. Implementation was done in Keras on Tensorflow backend and complete source-code was released online.
Klíčová slova
3D segmentation; brain; deep learning; imageprocessing; mri; neural networks; opensource; semantic segmentation; u-net
Autoři
KOLAŘÍK, M.; BURGET, R.; UHER, V.; DUTTA, M.
Vydáno
4. 7. 2018
Nakladatel
IEEE
Místo
Athens, Greece
ISBN
978-1-5386-4695-3
Kniha
Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)
Strany od
237
Strany do
240
Strany počet
4
URL
https://ieeexplore.ieee.org/document/8441508
BibTex
@inproceedings{BUT148982, author="Martin {Kolařík} and Radim {Burget} and Václav {Uher} and Malay Kishore {Dutta}", title="3D Dense-U-Net for MRI brain tissue segmentation", booktitle="Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)", year="2018", pages="237--240", publisher="IEEE", address="Athens, Greece", doi="10.1109/TSP.2018.8441508", isbn="978-1-5386-4695-3", url="https://ieeexplore.ieee.org/document/8441508" }