Detail publikace

3D Dense-U-Net for MRI brain tissue segmentation

KOLAŘÍK, M. BURGET, R. UHER, V. DUTTA, M.

Originální název

3D Dense-U-Net for MRI brain tissue segmentation

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

This paper presents a fully automatic method for 3D segmentation of brain tissue on MRI scans using modern deep learning approach and proposes 3D Dense-U-Net neural network architecture using densely connected layers. In contrast with many previous methods, our approach is capable of precise segmentation without any preprocessing of the input image and achieved accuracy 99.70 percent on testing data which outperformed human expert results. The architecture proposed in this paper can also be easily applied to any project already using U-net network as a segmentation algorithm to enhance its results. Implementation was done in Keras on Tensorflow backend and complete source-code was released online.

Klíčová slova

3D segmentation; brain; deep learning; imageprocessing; mri; neural networks; opensource; semantic segmentation; u-net

Autoři

KOLAŘÍK, M.; BURGET, R.; UHER, V.; DUTTA, M.

Vydáno

4. 7. 2018

Nakladatel

IEEE

Místo

Athens, Greece

ISBN

978-1-5386-4695-3

Kniha

Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)

Strany od

237

Strany do

240

Strany počet

4

URL

BibTex

@inproceedings{BUT148982,
  author="Martin {Kolařík} and Radim {Burget} and Václav {Uher} and Malay Kishore {Dutta}",
  title="3D Dense-U-Net for MRI brain tissue segmentation",
  booktitle="Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)",
  year="2018",
  pages="237--240",
  publisher="IEEE",
  address="Athens, Greece",
  doi="10.1109/TSP.2018.8441508",
  isbn="978-1-5386-4695-3",
  url="https://ieeexplore.ieee.org/document/8441508"
}