Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ROSECKÝ, M. ŠOMPLÁK, R. JANOŠŤÁK, F. BEDNÁŘ, J.
Originální název
Heuristic Approach to Multivariate Inverse Prediction Problem Using Data Reconciliation
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
Some engineering waste management tasks require a complete data sets of its production. However, these sets are not available in most cases. Whether they are not archiving at all or are unavailable for their sensitivity. This article deals with the issue of incomplete datasets at the microregional level. For estimates, the data from higher territorial units and additional information from the micro-region are used. The techniques used in this estimation are illustrated by an example in the field of waste management. In particular, it is an estimate of the amount of waste in individual municipalities. It is based on recorded waste production at district level and total waste management costs, which is available at a municipal level. To estimate the waste production, combinations of linear regression models with random forest models were used, followed by correction by quadratic and nonlinear optimization models. Such task could be seen as a multivariate version of inverse prediction (or calibraion) problem, which is not solvable analytically. To test this approach, data for 2010 - 2015 measured in the Czech Republic were used.
Klíčová slova
Data reconciliation; Random forest; Regression; Waste management; Optimization; Multivariate calibration; Inverse prediction
Autoři
ROSECKÝ, M.; ŠOMPLÁK, R.; JANOŠŤÁK, F.; BEDNÁŘ, J.
Vydáno
26. 6. 2018
Nakladatel
VUT
Místo
Brno
ISSN
1803-3814
Periodikum
Mendel Journal series
Ročník
2018
Číslo
1
Stát
Česká republika
Strany od
71
Strany do
78
Strany počet
8
URL
https://mendel-journal.org/index.php/mendel/article/view/25
BibTex
@article{BUT149953, author="Martin {Rosecký} and Radovan {Šomplák} and František {Janošťák} and Josef {Bednář}", title="Heuristic Approach to Multivariate Inverse Prediction Problem Using Data Reconciliation", journal="Mendel Journal series", year="2018", volume="2018", number="1", pages="71--78", doi="10.13164/mendel.2018.1.071", issn="1803-3814", url="https://mendel-journal.org/index.php/mendel/article/view/25" }