Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
Vladimr Malenovsky, Ing. Zdenek Smekal, Prof., Ing. Ivan Koula, Ing.
Originální název
Optimal Step-Size LMS Algorithm Using Exponentially Averaged Gradient Vector
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This letter proposes a new algorithm, which uses an optimal step-size (OSS) weight-adjustment scheme. This strategy leads to a better convergence rate and misadjustment in environments with sudden changes of parameters and for colored input data. The computational complexity is comparable with the well-known RLS. The performance of the novel approach is verified by simulations under system identification scenario and compared with that of the NLMS and RLS algorithms. The strategy uses averaged values of the correlation matrix and the cross-correlation vector. Experimental results for car-interior echo cancelation are presented including analysis of converegnce rate and misadjustment.
Klíčová slova
adaptive filter, least mean square, recursive least squares, convergence rate, computational complexity, misadjustment, optimal step-size, exponential averaging
Autoři
Rok RIV
2005
Vydáno
21. 11. 2005
Nakladatel
Belgrade, Serbia and Montenegro
Místo
ISBN
1-4244-0050-3
Kniha
Proceedings of the Intl. Conference EUROCON 2005
Edice
SVAZEK: R23 SIGNAL PROCESSING
Strany od
1554
Strany do
1557
Strany počet
4
BibTex
@inproceedings{BUT15142, author="Vladimír {Malenovský} and Zdeněk {Smékal} and Ivan {Koula}", title="Optimal Step-Size LMS Algorithm Using Exponentially Averaged Gradient Vector", booktitle="Proceedings of the Intl. Conference EUROCON 2005", year="2005", series="SVAZEK: R23 SIGNAL PROCESSING", pages="4", publisher="Belgrade, Serbia and Montenegro", address="Belgrade, Serbia and Montenegro", isbn="1-4244-0050-3" }