Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVOSADOVÁ, M. RAJMIC, P. ŠOREL, M.
Originální název
Orthogonality is superiority in piecewise-polynomial signal segmentation and denoising
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Segmentation and denoising of signals often rely on the polynomial model which assumes that every segment is a polynomial of a certain degree and that the segments are modeled independently of each other. Segment borders (breakpoints) correspond to positions in the signal where the model changes its polynomial representation. Several signal denoising methods successfully combine the polynomial assumption with sparsity. In this work, we follow on this and show that using orthogonal polynomials instead of other systems in the model is beneficial when segmenting signals corrupted by noise. The switch to orthogonal bases brings better resolving of the breakpoints, removes the need for including additional parameters and their tuning, and brings numerical stability. Last but not the least, it comes for free!
Klíčová slova
Signal segmentation; Signal smoothing; Signal approximation; Denoising; Piecewise polynomials; Orthogonality; Sparsity; Proximal splitting; Convex optimization
Autoři
NOVOSADOVÁ, M.; RAJMIC, P.; ŠOREL, M.
Vydáno
25. 1. 2019
Nakladatel
Springer Open
ISSN
1687-6172
Periodikum
EURASIP Journal on Advances in Signal Processing
Ročník
2019
Číslo
6
Stát
Spojené státy americké
Strany od
1
Strany do
15
Strany počet
URL
http://link.springer.com/article/10.1186/s13634-018-0598-9
Plný text v Digitální knihovně
http://hdl.handle.net/11012/137441
BibTex
@article{BUT153383, author="Michaela {Novosadová} and Pavel {Rajmic} and Michal {Šorel}", title="Orthogonality is superiority in piecewise-polynomial signal segmentation and denoising", journal="EURASIP Journal on Advances in Signal Processing", year="2019", volume="2019", number="6", pages="1--15", doi="10.1186/s13634-018-0598-9", issn="1687-6172", url="http://link.springer.com/article/10.1186/s13634-018-0598-9" }