Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
TENG, S. HOW, B. LEONG, W. TEOH, J. CHEE, A. MOTAVASEL, R. LAM, H.
Originální název
Principal component analysis-aided statistical process optimisation (PASPO) for process improvement in industrial refineries
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Integrated refineries and industrial processing plant in the real-world always face management and design difficulties to keep the processing operation lean and green. These challenges highlight the essentiality to improving product quality and yield without compromising environmental aspects. For various process system engineering application, traditional optimisation methodologies (i.e., pure mix-integer non-linear programming) can yield very precise global optimum solutions. However, for plant-wide optimisation, the generated solutions by such methods highly rely on the accuracy of the constructed model and often require an enumerate amount of process changes to be implemented in the real world. This paper solves this issue by using a special formulation of correlation-based principal component analysis (PCA) and Design of Experiment (DoE) methodologies to serve as statistical process optimisation for industrial refineries. The contribution of this work is that it provides an efficient framework for plant-wide optimisation based on plant operational data while not compromising on environmental impacts.
Klíčová slova
Principal Component Analysis, Design of experiment, Plant-wide optimisation, Statistical process optimisation, PASPO, Big data analytics
Autoři
TENG, S.; HOW, B.; LEONG, W.; TEOH, J.; CHEE, A.; MOTAVASEL, R.; LAM, H.
Vydáno
10. 7. 2019
Nakladatel
Elsevier
Místo
Oxford, England
ISSN
0959-6526
Periodikum
Journal of Cleaner Production
Ročník
225
Číslo
1
Stát
Spojené království Velké Británie a Severního Irska
Strany od
359
Strany do
375
Strany počet
17
URL
http://www.sciencedirect.com/science/article/pii/S0959652619309825
Plný text v Digitální knihovně
http://hdl.handle.net/11012/195644
BibTex
@article{BUT156780, author="Sin Yong {Teng} and Bing Shen {How} and Wei Dong {Leong} and Jun Hau {Teoh} and Adrian Siang Cheah {Chee} and Roxana Zahra {Motavasel} and Lam {Hon Loong}", title="Principal component analysis-aided statistical process optimisation (PASPO) for process improvement in industrial refineries", journal="Journal of Cleaner Production", year="2019", volume="225", number="1", pages="359--375", doi="10.1016/j.jclepro.2019.03.272", issn="0959-6526", url="http://www.sciencedirect.com/science/article/pii/S0959652619309825" }
Dokumenty
MPRA_paper_94058-pages-deleted.pdf