Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BREGER, A. ORLANDO, J. HARÁR, P. DÖRFLER, M. KLIMSCHA, S. GRECHENIG, C. GERENDAS, B. SCHMIDT-ERFURTH, U. EHLER, M.
Originální název
On Orthogonal Projections for Dimension Reduction and Applications in Augmented Target Loss Functions for Learning Problems
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, preservation of variance and of pairwise relative distances. Investigations of their asymptotic correlation as well as numerical experiments show that a projection does usually not satisfy both objectives at once. In a standard classification problem we determine projections on the input data that balance the objectives and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning tasks and introduce a general framework of augmented target loss functions. These loss functions integrate additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of our proposed augmented target loss functions increase the accuracy.
Klíčová slova
orthogonal projections; dimension reduction; augmented target loss;
Autoři
BREGER, A.; ORLANDO, J.; HARÁR, P.; DÖRFLER, M.; KLIMSCHA, S.; GRECHENIG, C.; GERENDAS, B.; SCHMIDT-ERFURTH, U.; EHLER, M.
Vydáno
23. 8. 2020
Nakladatel
Springer
ISSN
1573-7683
Periodikum
Journal of Mathematical Imaging and Vision
Ročník
62
Číslo
3
Stát
Nizozemsko
Strany od
376
Strany do
394
Strany počet
19
URL
https://link.springer.com/article/10.1007/s10851-019-00902-2
Plný text v Digitální knihovně
http://hdl.handle.net/11012/187007
BibTex
@article{BUT158172, author="BREGER, A. and ORLANDO, J. and HARÁR, P. and DÖRFLER, M. and KLIMSCHA, S. and GRECHENIG, C. and GERENDAS, B. and SCHMIDT-ERFURTH, U. and EHLER, M.", title="On Orthogonal Projections for Dimension Reduction and Applications in Augmented Target Loss Functions for Learning Problems", journal="Journal of Mathematical Imaging and Vision", year="2020", volume="62", number="3", pages="376--394", doi="10.1007/s10851-019-00902-2", issn="1573-7683", url="https://link.springer.com/article/10.1007/s10851-019-00902-2" }