Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
BAMMER, R.; DÖRFLER, M.; HARÁR, P.
Originální název
Gabor frames and deep scattering networks in audio processing
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper introduces Gabor scattering, a feature extractor based on Gabor frames and Mallat's scattering transform. By using a simple signal model for audio signals specific properties of Gabor scattering are studied. It is shown that for each layer, specific invariances to certain signal characteristics occur. Furthermore, deformation stability of the coefficient vector generated by the feature extractor is derived by using a decoupling technique which exploits the contractivity of general scattering networks. Deformations are introduced as changes in spectral shape and frequency modulation. The theoretical results are illustrated by numerical examples and experiments. Numerical evidence is given by evaluation on a synthetic and a "real" data set, that the invariances encoded by the Gabor scattering transform lead to higher performance in comparison with just using Gabor transform, especially when few training samples are available.
Anglický abstrakt
Klíčová slova
machine learning; scattering transform; Gabor transform; deep learning; time-frequency analysis; CNN;
Klíčová slova v angličtině
Autoři
Rok RIV
2020
Vydáno
26.09.2019
Nakladatel
MDPI
Místo
Switzerland
ISSN
2075-1680
Periodikum
Axioms
Svazek
8
Číslo
4
Stát
Švýcarská konfederace
Strany od
1
Strany do
25
Strany počet
URL
https://www.mdpi.com/2075-1680/8/4/106
Plný text v Digitální knihovně
http://hdl.handle.net/11012/194791
BibTex
@article{BUT159057, author="Roswitha {Bammer} and Monika {Dörfler} and Pavol {Harár}", title="Gabor frames and deep scattering networks in audio processing", journal="Axioms", year="2019", volume="8", number="4", pages="1--25", doi="10.3390/axioms8040106", url="https://www.mdpi.com/2075-1680/8/4/106" }
Dokumenty
axioms-08-00106-v2