Detail publikace

Restricted Boltzmann Machine Method for Dimensionality Reduction of Spectroscopic Data

VRÁBEL, J. POŘÍZKA, P. KAISER, J.

Originální název

Restricted Boltzmann Machine Method for Dimensionality Reduction of Spectroscopic Data

Typ

konferenční sborník (ne článek)

Jazyk

angličtina

Originální abstrakt

Multivariate data obtained using, for instance, Laser-Induced Breakdown Spectroscopy (LIBS) are quite bulky and complex. Advanced processing of spectroscopic data demands a multidisciplinary approach covering not only modern machine learning tools but also a deep understanding of underlying physical mechanisms. Strong non-linearities of those mechanisms are inducing problems in their processing using standard linear algorithms. Artificial Neural Networks (ANN) seem suitable for this task, and based on their success, they are given considerable attention within the spectroscopic community. We propose a new methodology based on Restricted Boltzmann Machine (ANN method) for dimensionality reduction of spectroscopic data and compare it to well known linear techniques such as PCA. Moreover, we apply this technique to the processing and mapping of very high-dimensional LIBS data.

Klíčová slova

LIBS, Machine Learning, RBM, Neural Networks, Spectroscopy, Data, Dimension Reduction

Autoři

VRÁBEL, J.; POŘÍZKA, P.; KAISER, J.

Vydáno

8. 9. 2019

Nakladatel

Spektroskopická společnost Jana Marka Marci

Místo

Ke Karlovu 2027/3, 120 00 Praha 2 - Nové Město

ISBN

978-80-88195-13-9

Kniha

EMSLIBS 2019 Book of abstracts

Strany počet

293

URL

BibTex

@proceedings{BUT159096,
  editor="Jakub {Vrábel} and Pavel {Pořízka} and Jozef {Kaiser}",
  title="Restricted Boltzmann Machine Method for Dimensionality Reduction of Spectroscopic Data",
  year="2019",
  pages="293",
  publisher="Spektroskopická společnost Jana Marka Marci",
  address="Ke Karlovu 2027/3, 120 00 Praha 2 - Nové Město",
  isbn="978-80-88195-13-9",
  url="http://libs.ceitec.cz/files/281/213.pdf"
}