Detail publikace
Discriminatively Re-trained i-Vector Extractor For Speaker Recognition
NOVOTNÝ, O. PLCHOT, O. GLEMBEK, O. BURGET, L. MATĚJKA, P.
Originální název
Discriminatively Re-trained i-Vector Extractor For Speaker Recognition
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this work we revisit discriminative training of the i-vector extractorcomponent in the standard speaker verification (SV) system. Themotivation of our research lies in the robustness and stability of thislarge generative model, which we want to preserve, and focus itspower towards any intended SV task. We show that after generativeinitialization of the i-vector extractor, we can further refine itwith discriminative training and obtain i-vectors that lead to betterperformance on various benchmarks representing different acousticdomains.
Klíčová slova
i-vectors, i-vector extractor, speaker recogni-tion, speaker verification, discriminative training
Autoři
NOVOTNÝ, O.; PLCHOT, O.; GLEMBEK, O.; BURGET, L.; MATĚJKA, P.
Vydáno
12. 5. 2019
Nakladatel
IEEE Signal Processing Society
Místo
Brighton
ISBN
978-1-5386-4658-8
Kniha
Proceedings of 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
Strany od
6031
Strany do
6035
Strany počet
5
URL
BibTex
@inproceedings{BUT160000,
author="Ondřej {Novotný} and Oldřich {Plchot} and Ondřej {Glembek} and Lukáš {Burget} and Pavel {Matějka}",
title="Discriminatively Re-trained i-Vector Extractor For Speaker Recognition",
booktitle="Proceedings of 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)",
year="2019",
pages="6031--6035",
publisher="IEEE Signal Processing Society",
address="Brighton",
doi="10.1109/ICASSP.2019.8682590",
isbn="978-1-5386-4658-8",
url="https://ieeexplore.ieee.org/document/8682590"
}
Dokumenty