Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MEYER, F. ETZLINGER, B. LIU, Z. HLAWATSCH, F. WIN, Z.
Originální název
A Scalable Algorithm for Network Localization and Synchronization
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The Internet of Things (IoT) will seamlessly integrate a large number of densely deployed heterogeneous devices and will enable new location-aware services. However, fine-grained localization of IoT devices is challenging as their computation and communication resources are typically limited and different devices may have different qualities of internal clocks and different mobility patterns. To address these challenges, we propose a cooperative, scalable, and time-recursive algorithm for network localization and synchronization (NLS). Our algorithm is based on time measurements and supports heterogeneous devices with limited computation and communication resources, time-varying clock and location parameters, arbitrary state-evolution models, and time-varying network connectivity. These attributes make the proposed algorithm attractive for IoT-related applications. The algorithm is furthermore able to incorporate measurements from additional sensors for positioning, navigation, and timing such as receivers for global navigation satellite systems. Based on a factor graph representation of the underlying spatiotemporal Bayesian sequential estimation problem, the algorithm uses belief propagation (BP) for an efficient marginalization of the joint posterior distribution. To account for the nonlinear measurement model and nonlinear state-evolution models while keeping the communication and computation requirements low, we develop an efficient second-order implementation of the BP rules by means of the recently introduced sigma point belief propagation technique. Simulation results demonstrate the high synchronization and localization accuracy as well as the low computational complexity of the proposed algorithm. In particular, in sufficiently dense networks, the proposed algorithm outperforms the state-of-the-art BP-based algorithm for NLS in terms of both estimation accuracy and computational complexity.
Klíčová slova
Belief propagation (BP); cooperative localization; cooperative synchronization; distributed estimation; factor graph; Internet of Things (IoT); message passing; network localization; network synchronization
Autoři
MEYER, F.; ETZLINGER, B.; LIU, Z.; HLAWATSCH, F.; WIN, Z.
Vydáno
2. 3. 2018
Nakladatel
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Místo
PISCATAWAY
ISSN
2327-4662
Periodikum
IEEE Internet of Things Journal
Ročník
5
Číslo
6
Stát
Spojené státy americké
Strany od
4714
Strany do
4727
Strany počet
14
URL
https://ieeexplore.ieee.org/document/8306100
BibTex
@article{BUT170644, author="MEYER, F. and ETZLINGER, B. and LIU, Z. and HLAWATSCH, F. and WIN, Z.", title="A Scalable Algorithm for Network Localization and Synchronization", journal="IEEE Internet of Things Journal", year="2018", volume="5", number="6", pages="4714--4727", doi="10.1109/JIOT.2018.2811408", issn="2327-4662", url="https://ieeexplore.ieee.org/document/8306100" }