Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SHAMAEI, A. STARČUKOVÁ, J. STARČUK, Z.
Originální název
A Wavelet Scattering Convolutional Network for Magnetic Resonance Spectroscopy Signal Quantitation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Magnetic resonance spectroscopy (MRS) can provide quantitative information about local metabolite concentrations in living tissues, but in practice the quantification can be difficult. Recently deep learning (DL) has been used for quantification of MRS signals in the frequency domain, and DL combined with time-frequency analysis for artefact detection in MRS. The networks most widely used in previous studies were Convolutional Neural Networks (CNN). Nonetheless, the optimal architecture and hyper-parameters of the CNN for MRS are not well understood; CNN has no knowledge about the nature of the MRS signal and its training is computationally expensive. On the other hand, Wavelet Scattering Convolutional Network (WSCN) is well-understood and computationally cheap. In this study, we found that a wavelet scattering network could hopefully be also used for metabolite quantification.
Klíčová slova
Magnetic Resonance Spectroscopy, Quantification, Deep Learning, Machine Learning.
Autoři
SHAMAEI, A.; STARČUKOVÁ, J.; STARČUK, Z.
Vydáno
13. 2. 2021
Nakladatel
Science and Technology Publications
Místo
Portugal
ISBN
978-989-758-490-9
Kniha
Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies - (Volume 4)
Strany od
268
Strany do
275
Strany počet
8
URL
https://www.scitepress.org/PublicationsDetail.aspx?ID=gelMvIsqMOc=&t=1
Plný text v Digitální knihovně
http://hdl.handle.net/11012/200993
BibTex
@inproceedings{BUT170998, author="Amirmohammad {Shamaei} and Jana {Starčuková} and Zenon {Starčuk}", title="A Wavelet Scattering Convolutional Network for Magnetic Resonance Spectroscopy Signal Quantitation", booktitle="Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies - (Volume 4)", year="2021", pages="268--275", publisher="Science and Technology Publications", address="Portugal", doi="10.5220/0010318502680275", isbn="978-989-758-490-9", url="https://www.scitepress.org/PublicationsDetail.aspx?ID=gelMvIsqMOc=&t=1" }