Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BOŠTÍK, O.
Originální název
SEMI-SUPERVISED APPROACH TO TRAIN CAPTCHA LETTER POSITION DETETOR
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Common Optical Character Recognition (OCR) methods benefit from the fact, that the text is distributed in images in a predictable pattern. This is not the situation with CAPTCHA systems. Utilizing OCR algorithms to overcome common web anti-abuse CAPTCHA systems is therefore a challenging task. To train a system to overcome any CAPTCHA scheme, an attacker needs a huge dataset of annotated images. And for some methods, the attacker needs not only the right answers but also an exact position of the character in the CAPTCHA image. Annotate the positions of the object in an image is a time-consuming task. In this paper, we propose a system, which can help to annotate the position of CAPTCHA character with minimal human interaction. After annotating a small sample of targeted CAPTCHA images, a YOLO-based region detection deep network is used to search for the characters’ locations.
Klíčová slova
OCR, CAPTCHA, Deep learning, YOLO v2, semi-supervised learning, MATLAB
Autoři
Vydáno
26. 4. 2021
Nakladatel
Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
ISBN
978-80-214-5942-7
Kniha
Proceedings of the 27nd Conference STUDENT EEICT 2018
Číslo edice
1
Strany od
436
Strany do
440
Strany počet
5
BibTex
@inproceedings{BUT171159, author="Ondřej {Boštík}", title="SEMI-SUPERVISED APPROACH TO TRAIN CAPTCHA LETTER POSITION DETETOR", booktitle="Proceedings of the 27nd Conference STUDENT EEICT 2018", year="2021", number="1", pages="436--440", publisher="Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5942-7" }