Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOLAŘÍK, M. BURGET, R. TRAVIESO-GONZÁLEZ, C. KOČICA, J.
Originální název
On the Implementation of Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This article describes detailed notes on the practical implementation of our paper Planar 3D transfer learning for end to end unimodal MRI unbalanced data segmentation (ICPR 2020, Milan), which deals with a problem of multiple sclerosis lesion segmentation from a unimodal MRI flair brain scan by applying a planar 3D transfer learning backbone weights to an autoencoder segmentation neural network. Our source code is published online under an open-source license, and we provide step-by-step instructions for the reproduction of our results.
Klíčová slova
Multiple sclerosis; Reproducibility; Segmentation; transfer learning
Autoři
KOLAŘÍK, M.; BURGET, R.; TRAVIESO-GONZÁLEZ, C.; KOČICA, J.
Vydáno
14. 5. 2021
Nakladatel
Springer, Cham
Místo
Online
ISBN
978-3-030-76422-7
Kniha
Reproducible Research in Pattern Recognition
Edice
Third International Workshop, RRPR 2021, Virtual Event, January 11, 2021, Revised Selected Papers
Strany od
146
Strany do
151
Strany počet
7
URL
https://link.springer.com/chapter/10.1007/978-3-030-76423-4_10
BibTex
@inproceedings{BUT172287, author="KOLAŘÍK, M. and BURGET, R. and TRAVIESO-GONZÁLEZ, C. and KOČICA, J.", title="On the Implementation of Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation", booktitle="Reproducible Research in Pattern Recognition", year="2021", series="Third International Workshop, RRPR 2021, Virtual Event, January 11, 2021, Revised Selected Papers", pages="146--151", publisher="Springer, Cham", address="Online", doi="10.1007/978-3-030-76423-4\{_}10", isbn="978-3-030-76422-7", url="https://link.springer.com/chapter/10.1007/978-3-030-76423-4_10" }