Detail publikačního výsledku

Rotary Mappings and Projections of a Sphere

MIKEŠ, J.; GUSEVA, N.; PEŠKA, P.; RÝPAROVÁ, L.

Originální název

Rotary Mappings and Projections of a Sphere

Anglický název

Rotary Mappings and Projections of a Sphere

Druh

Článek WoS

Originální abstrakt

Rotary mappings of two-dimensional spaces were studied by many authors. In this paper, we show that parallel and central projections of a sphere onto a plane or a sphere are rotary mappings. These projections also realize the rotary transformations of a sphere. In particular, we construct rotary mappings between compact spaces "in the large." Note that the classical stereographic projection is a rotary mapping as well.

Anglický abstrakt

Rotary mappings of two-dimensional spaces were studied by many authors. In this paper, we show that parallel and central projections of a sphere onto a plane or a sphere are rotary mappings. These projections also realize the rotary transformations of a sphere. In particular, we construct rotary mappings between compact spaces "in the large." Note that the classical stereographic projection is a rotary mapping as well.

Klíčová slova

rotary mapping; projection of a sphere; mappings "in the large"

Klíčová slova v angličtině

rotary mapping; projection of a sphere; mappings "in the large"

Autoři

MIKEŠ, J.; GUSEVA, N.; PEŠKA, P.; RÝPAROVÁ, L.

Rok RIV

2022

Vydáno

01.07.2021

Nakladatel

MAIK NAUKA/INTERPERIODICA/SPRINGER

Místo

NEW YORK

ISSN

0001-4346

Periodikum

MATHEMATICAL NOTES

Svazek

110

Číslo

1-2

Stát

Ruská federace

Strany od

152

Strany do

155

Strany počet

4

URL

BibTex

@article{BUT175948,
  author="Josef {Mikeš} and Nadezda {Guseva} and Patrik {Peška} and Lenka {Vítková}",
  title="Rotary Mappings and Projections of a Sphere",
  journal="MATHEMATICAL NOTES",
  year="2021",
  volume="110",
  number="1-2",
  pages="152--155",
  doi="10.1134/S0001434621070166",
  issn="0001-4346",
  url="https://doi.org/10.4213/mzm13182"
}