Detail publikace

User Churn Model in E-Commerce Retail

FRIDRICH, M. DOSTÁL, P.

Originální název

User Churn Model in E-Commerce Retail

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In e-commerce retail, maintaining a healthy customer base through retention management is necessary. Churn prediction efforts support the goal of retention and rely upon dependent and independent characteristics. Unfortunately, there does not appear to be a consensus regarding a user churn model. Thus, our goal is to propose a model based on a traditional and new set of attributes and explore its properties using auxiliary evaluation. Individual variable importance is assessed using the best performing modeling pipelines and a permutation procedure. In addition, we estimate the effects on the performance and quality of a feature set using an original technique based on importance ranking and information retrieval. The performance benchmark reveals satisfying pipelines utilizing LR, SVM-RBF, and GBM learners. The solutions rely profoundly on traditional recency and frequency aspects of user behavior. Interestingly, SVM-RBF and GBM exploit the potential of more subtle elements describing user preferences or date-time behavioural patterns. The collected evidence may also aid business decision-making associated with churn prediction efforts, e.g., retention campaign design.

Klíčová slova

User Model; Churn Prediction; Customer Relationship Management; Electronic Commerce; Retail; Machine Learning; Feature Importance; Feature Set Importance

Autoři

FRIDRICH, M.; DOSTÁL, P.

Vydáno

5. 4. 2022

Nakladatel

Univ Pardubice, Fac Economics Adm

Místo

Pardubice

ISSN

1804-8048

Periodikum

Scientific Papers of the University of Pardubice, Series D

Ročník

30

Číslo

1

Stát

Česká republika

Strany od

1

Strany do

12

Strany počet

12

URL

Plný text v Digitální knihovně

BibTex

@article{BUT177514,
  author="Martin {Fridrich} and Petr {Dostál}",
  title="User Churn Model in E-Commerce Retail",
  journal="Scientific Papers of the University of Pardubice, Series D",
  year="2022",
  volume="30",
  number="1",
  pages="1--12",
  doi="10.46585/sp30011478",
  issn="1804-8048",
  url="https://editorial.upce.cz/1804-8048/30/1/1478"
}