Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KURUKURU, V.; KHAN, M.; SAHOO, S.
Originální název
Cybersecurity in Power Electronics Using Minimal Data - A Physics-Informed Spline Learning Approach
Anglický název
Druh
Článek WoS
Originální abstrakt
Cyberattacks can be strategically counterfeited to replicate grid faults, thereby manipulating the protection system and leading to accidental disconnection of grid-tied converters. To prevent such setbacks, we propose a physics-informed spline learning approach-based anomaly diagnosis mechanism to distinguish between both events using minimal data for the first time in the realm of power electronics. This methodology not only provides compelling accuracy with limited data, but also reduces the training and computational resources significantly. We validate its effectiveness and accuracy under experimental conditions to conclude how data availability problem can be handled.
Anglický abstrakt
Klíčová slova
Splines (mathematics); Cyberattack; Voltage measurement; Mathematical models; Physics; Circuit faults; Current measurement; Anomaly diagnosis; artificial intelligence; cyberattacks; photovoltaic inverters
Klíčová slova v angličtině
Autoři
Rok RIV
2023
Vydáno
08.06.2022
Nakladatel
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Místo
PISCATAWAY
ISSN
0885-8993
Periodikum
IEEE TRANSACTIONS ON POWER ELECTRONICS
Svazek
37
Číslo
11
Stát
Spojené státy americké
Strany od
12938
Strany do
12943
Strany počet
6
URL
https://ieeexplore.ieee.org/abstract/document/9791853
BibTex
@article{BUT178406, author="V S Bharath {Kurukuru} and Mohammed Ali {Khan} and Subham {Sahoo}", title="Cybersecurity in Power Electronics Using Minimal Data - A Physics-Informed Spline Learning Approach", journal="IEEE TRANSACTIONS ON POWER ELECTRONICS", year="2022", volume="37", number="11", pages="12938--12943", doi="10.1109/TPEL.2022.3180943", issn="0885-8993", url="https://ieeexplore.ieee.org/abstract/document/9791853" }