Detail publikačního výsledku

Low temperature 2D GaN growth on Si(111) 7 x 7 assisted by hyperthermal nitrogen ions

MANIŠ, J.; MACH, J.; BARTOŠÍK, M.; ŠAMOŘIL, T.; HORÁK, M.; ČALKOVSKÝ, V.; NEZVAL, D.; KACHTÍK, L.; KONEČNÝ, M.; ŠIKOLA, T.

Originální název

Low temperature 2D GaN growth on Si(111) 7 x 7 assisted by hyperthermal nitrogen ions

Anglický název

Low temperature 2D GaN growth on Si(111) 7 x 7 assisted by hyperthermal nitrogen ions

Druh

Článek WoS

Originální abstrakt

As the characteristic dimensions of modern top-down devices are getting smaller, such devices reach their operational limits imposed by quantum mechanics. Thus, two-dimensional (2D) structures appear to be one of the best solutions to meet the ultimate challenges of modern optoelectronic and spintronic applications. The representative of III-V semiconductors, gallium nitride (GaN), is a great candidate for UV and high-power applications at a nanoscale level. We propose a new way of fabrication of 2D GaN on the Si(111) 7 x 7 surface using post-nitridation of Ga droplets by hyperthermal (E = 50 eV) nitrogen ions at low substrate temperatures (T < 220 degrees C). The deposition of Ga droplets and their post-nitridation are carried out using an effusion cell and a special atom/ion beam source developed by our group, respectively. This low-temperature droplet epitaxy (LTDE) approach provides well-defined ultra-high vacuum growth conditions during the whole fabrication process resulting in unique 2D GaN nanostructures. A sharp interface between the GaN nanostructures and the silicon substrate together with a suitable elemental composition of nanostructures was confirmed by TEM. In addition, SEM, X-ray photoelectron spectroscopy (XPS), AFM and Auger microanalysis were successful in enabling a detailed characterization of the fabricated GaN nanostructures.

Anglický abstrakt

As the characteristic dimensions of modern top-down devices are getting smaller, such devices reach their operational limits imposed by quantum mechanics. Thus, two-dimensional (2D) structures appear to be one of the best solutions to meet the ultimate challenges of modern optoelectronic and spintronic applications. The representative of III-V semiconductors, gallium nitride (GaN), is a great candidate for UV and high-power applications at a nanoscale level. We propose a new way of fabrication of 2D GaN on the Si(111) 7 x 7 surface using post-nitridation of Ga droplets by hyperthermal (E = 50 eV) nitrogen ions at low substrate temperatures (T < 220 degrees C). The deposition of Ga droplets and their post-nitridation are carried out using an effusion cell and a special atom/ion beam source developed by our group, respectively. This low-temperature droplet epitaxy (LTDE) approach provides well-defined ultra-high vacuum growth conditions during the whole fabrication process resulting in unique 2D GaN nanostructures. A sharp interface between the GaN nanostructures and the silicon substrate together with a suitable elemental composition of nanostructures was confirmed by TEM. In addition, SEM, X-ray photoelectron spectroscopy (XPS), AFM and Auger microanalysis were successful in enabling a detailed characterization of the fabricated GaN nanostructures.

Klíčová slova

2D GaN; LATTICE PARAMETERS

Klíčová slova v angličtině

2D GaN; LATTICE PARAMETERS

Autoři

MANIŠ, J.; MACH, J.; BARTOŠÍK, M.; ŠAMOŘIL, T.; HORÁK, M.; ČALKOVSKÝ, V.; NEZVAL, D.; KACHTÍK, L.; KONEČNÝ, M.; ŠIKOLA, T.

Rok RIV

2023

Vydáno

15.07.2022

Nakladatel

Royal Society of Chemistry

Místo

CAMBRIDGE

ISSN

2516-0230

Periodikum

Nanoscale Advances

Svazek

1

Číslo

1

Stát

Spojené království Velké Británie a Severního Irska

Strany od

1

Strany do

8

Strany počet

8

URL

Plný text v Digitální knihovně

BibTex

@article{BUT178846,
  author="Jaroslav {Maniš} and Jindřich {Mach} and Miroslav {Bartošík} and Tomáš {Šamořil} and Michal {Horák} and Vojtěch {Čalkovský} and David {Nezval} and Lukáš {Kachtík} and Martin {Konečný} and Tomáš {Šikola}",
  title="Low temperature 2D GaN growth on Si(111) 7 x 7 assisted by hyperthermal nitrogen ions",
  journal="Nanoscale Advances",
  year="2022",
  volume="1",
  number="1",
  pages="1--8",
  doi="10.1039/d2na00175f",
  issn="2516-0230",
  url="https://pubs.rsc.org/en/content/articlelanding/2022/NA/D2NA00175F"
}

Dokumenty