Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SHUKLA, R. SARKAR, A. CHANDRA, A. MIKULÁŠEK, T. PROKEŠ, A. JAN M., K. ZIÓŁKOWSKI, C.
Originální název
Deep Learning based Power Delay Profile Trend Generation: A 60 GHz Intra-Vehicle Case Study
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this article we have utilized deep learning (DL) for channel sounding application in the millimeter wave (mmWave) band. Using data from a channel sounding campaign for studying intra-vehicle wireless channels operating over the 55-65 GHz mmWave band, we have trained an artificial neural network (ANN) model, which is used to simulate power-delay-profile (PDP) trends. The required simulation inputs form a minimal set, only comprising the frequency points, the transmitter-receiver distance and the presence of passengers inside car. The simulated PDP trend shows good match with the measured PDP and can be used for constructing tapped-delay-line (TDL) based channel models.
Klíčová slova
mmWave channel sounding; intra-vehicle communication; deep learning; power-delay-profile
Autoři
SHUKLA, R.; SARKAR, A.; CHANDRA, A.; MIKULÁŠEK, T.; PROKEŠ, A.; JAN M., K.; ZIÓŁKOWSKI, C.
Vydáno
15. 7. 2022
Nakladatel
Institute of Electrical and Electronics Engineers Inc.
Místo
Colorado State University
ISBN
9781665496582
Kniha
2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings
Strany od
209
Strany do
210
Strany počet
2
URL
https://ieeexplore.ieee.org/document/9887316
BibTex
@inproceedings{BUT179856, author="Rajeev {Shukla} and Abhishek Narayan {Sarkar} and Aniruddha {Chandra} and Tomáš {Mikulášek} and Aleš {Prokeš} and Kelner {Jan M.} and Cezary {Ziółkowski}", title="Deep Learning based Power Delay Profile Trend Generation: A 60 GHz Intra-Vehicle Case Study", booktitle="2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings", year="2022", pages="209--210", publisher="Institute of Electrical and Electronics Engineers Inc.", address="Colorado State University", doi="10.1109/AP-S/USNC-URSI47032.2022.9887316", isbn="9781665496582", url="https://ieeexplore.ieee.org/document/9887316" }