Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
N. Sengar R. C. Joshi M. K. Dutta R. Burget
Originální název
EyeDeep-Net: A Multi-Class Diagnosis of Retinal Diseases using Deep Neural Network
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Retinal images are a key element for ophthalmologists in diagnosing a variety of eye illnesses. The retina is vulnerable to microvascular changes as a result of many retinal diseases and a variety of research have been done on early diagnosis of medical images to take proper treatment on time. This paper designs an automated deep learning-based non-invasive framework to diagnose multiple eye diseases using colour fundus images. A multi-class eye disease RFMiD dataset was used to develop an efficient diagnostic framework. Multi-class fundus images were extracted from a multi-label dataset and then various augmentation techniques were applied to make the framework robust in real-time. Images were processed according to the network for low computational demand. A multi-layer neural network EyeDeep-Net has been developed to train and test images for diagnosis of various eye problems in which the keystone convolutional neural network extracts relevant features from the input colour fundus image dataset and then processed features were used to make predictive diagnostic decisions. The strength of the EyeDeep-Net is evaluated using multiple statistical parameters and the performance of the proposed model is found to be significantly superior to multiple baseline state-of-the-art models. A comprehensive comparison of the proposed methodology to the most recent methods proves its efficacy in terms of classification and disease identification through digital fundus images.
Klíčová slova
Deep learning ; Eye diseases; Fundus; Image classification; Medical imaging; Neural networks
Autoři
N. Sengar; R. C. Joshi; M. K. Dutta; R. Burget
Vydáno
21. 1. 2023
Nakladatel
Springer-Verlag London Ltd., part of Springer Nature 2023
Místo
London
ISSN
1433-3058
Periodikum
Neural Computing and Applications
Ročník
35
Číslo
3
Stát
Spojené království Velké Británie a Severního Irska
Strany od
10551
Strany do
10571
Strany počet
21
URL
https://link.springer.com/article/10.1007/s00521-023-08249-x
BibTex
@article{BUT181533, author="N. Sengar and R. C. Joshi and M. K. Dutta and R. Burget", title="EyeDeep-Net: A Multi-Class Diagnosis of Retinal Diseases using Deep Neural Network", journal="Neural Computing and Applications", year="2023", volume="35", number="3", pages="10551--10571", doi="10.1007/s00521-023-08249-x", issn="1433-3058", url="https://link.springer.com/article/10.1007/s00521-023-08249-x" }