Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DVOŘÁK, R. CHOBOLA, Z. PLŠKOVÁ, I. HELA, R. BODNÁROVÁ, L.
Originální název
Classification of Thermally Degraded Concrete by Acoustic Resonance Method and Image Analysis via Machine Learning
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The study of the resistance of plain concrete to high temperatures is a current topic across the field of civil engineering diagnostics. It is a type of damage that affects all components in a complex way, and there are many ways to describe and diagnose this degradation process and the resulting condition of the concrete. With regard to resistance to high temperatures, phenomena such as explosive spalling or partial creep of the material may occur. The resulting condition of thermally degraded concrete can be assessed by a number of destructive and nondestructive methods based on either physical or chemical principles. The aim of this paper is to present a comparison of nondestructive testing of selected concrete mixtures and the subsequent classification of the condition after thermal degradation. In this sense, a classification model based on supervised machine learning principles is proposed, in which the thermal degradation of the selected test specimens are known classes. The whole test set was divided into five mixtures, each with seven temperature classes in 200 °C steps from 200 °C up to 1200 °C. The output of the paper is a comparison of the different settings of the classification model and validation algorithm in relation to the observed parameters and the resulting model accuracy. The classification is done by using parameters obtained by the acoustic NDT Impact-Echo method and image-processing tools.
Klíčová slova
concrete; high temperatures; nondestructive testing; machine learning; image analysis; Impact-Echo; resonance method
Autoři
DVOŘÁK, R.; CHOBOLA, Z.; PLŠKOVÁ, I.; HELA, R.; BODNÁROVÁ, L.
Vydáno
22. 1. 2023
Nakladatel
MDPI
Místo
Basel, Switzerland
ISSN
1996-1944
Periodikum
Materials
Ročník
16
Číslo
3
Stát
Švýcarská konfederace
Strany počet
25
URL
https://www.mdpi.com/1996-1944/16/3/1010
Plný text v Digitální knihovně
http://hdl.handle.net/11012/208773
BibTex
@article{BUT181536, author="Richard {Dvořák} and Zdeněk {Chobola} and Iveta {Plšková} and Rudolf {Hela} and Lenka {Bodnárová}", title="Classification of Thermally Degraded Concrete by Acoustic Resonance Method and Image Analysis via Machine Learning", journal="Materials", year="2023", volume="16", number="3", pages="25", doi="10.3390/ma16031010", issn="1996-1944", url="https://www.mdpi.com/1996-1944/16/3/1010" }
Dokumenty
materials-16-01010.pdf