Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MESÁROŠOVÁ, M. MIHÁLIK, O.
Originální název
Sparse Representation for Classification of Posture in Bed
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Redundant dictionaries, also known as frames, offer a non–orthogonal representation of signals, which leads to sparsity in their representative coefficients. As this approach provides many advantageous properties it has been used in various applications such as denoising, robust transmissions, segmentation, quantum theory and others. This paper investigates the possibility of using sparse representation in classification, comparing the achieved results to other commonly used classifiers. The different methods were evaluated in a real-world classification task in which the position of a lying patient has to be deduced based on the data provided by a pressure mattress of 30×11 sensors. The investigated method outperformed most of the commonly used classifiers with accuracy exceeding 92%, while being less demanding on design and implementation complexity.
Klíčová slova
sparse representation, linear regression, LASSO, redundant basis, SRC, classification
Autoři
MESÁROŠOVÁ, M.; MIHÁLIK, O.
Vydáno
25. 4. 2023
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno
ISBN
978-80-214-6154-3
Kniha
Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers
Edice
1
ISSN
2788-1334
Periodikum
Proceedings II of the Conference STUDENT EEICT
Stát
Česká republika
Strany od
101
Strany do
104
Strany počet
4
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
BibTex
@inproceedings{BUT184282, author="Michaela {Mesárošová} and Ondrej {Mihálik}", title="Sparse Representation for Classification of Posture in Bed", booktitle="Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers", year="2023", series="1", journal="Proceedings II of the Conference STUDENT EEICT", pages="101--104", publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication", address="Brno", isbn="978-80-214-6154-3", issn="2788-1334", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" }