Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOHÚT, J. HRADIŠ, M. KIŠŠ, M.
Originální název
Towards Writing Style Adaptation in Handwriting Recognition
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
One of the challenges of handwriting recognition is to transcribe a large number of vastly different writing styles. State-of-the-art approaches do not explicitly use information about the writer's style, which may be limiting overall accuracy due to various ambiguities. We explore models with writer-dependent parameters which take the writer's identity as an additional input. The proposed models can be trained on datasets with partitions likely written by a single author (e.g. single letter, diary, or chronicle). We propose a Writer Style Block (WSB), an adaptive instance normalization layer conditioned on learned embeddings of the partitions. We experimented with various placements and settings of WSB and contrastively pre-trained embeddings. We show that our approach outperforms a baseline with no WSB in a writer-dependent scenario and that it is possible to estimate embeddings for new writers. However, domain adaptation using simple finetuning in a writer-independent setting provides superior accuracy at a similar computational cost. The proposed approach should be further investigated in terms of training stability and embedding regularization to overcome such a baseline.
Klíčová slova
Handwritten text recognition, OCR, Domain adaptation, Domain dependent parameters, Finetuning, CTC.
Autoři
KOHÚT, J.; HRADIŠ, M.; KIŠŠ, M.
Vydáno
19. 8. 2023
Nakladatel
Springer Nature Switzerland AG
Místo
San José
ISBN
978-3-031-41684-2
Kniha
Document Analysis and Recognition - ICDAR 2023
Edice
Lecture Notes in Computer Science
ISSN
0302-9743
Periodikum
Ročník
14190
Číslo
1
Stát
Spolková republika Německo
Strany od
377
Strany do
394
Strany počet
18
URL
https://pero.fit.vutbr.cz/publications
BibTex
@inproceedings{BUT185150, author="Jan {Kohút} and Michal {Hradiš} and Martin {Kišš}", title="Towards Writing Style Adaptation in Handwriting Recognition", booktitle="Document Analysis and Recognition - ICDAR 2023", year="2023", series="Lecture Notes in Computer Science", journal="Lecture Notes in Computer Science", volume="14190", number="1", pages="377--394", publisher="Springer Nature Switzerland AG", address="San José", doi="10.1007/978-3-031-41685-9\{_}24", isbn="978-3-031-41684-2", issn="0302-9743", url="https://pero.fit.vutbr.cz/publications" }