Detail publikace

Towards Writing Style Adaptation in Handwriting Recognition

KOHÚT, J. HRADIŠ, M. KIŠŠ, M.

Originální název

Towards Writing Style Adaptation in Handwriting Recognition

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

One of the challenges of handwriting recognition is to transcribe a large number of vastly different writing styles. State-of-the-art approaches do not explicitly use information about the writer's style, which may be limiting overall accuracy due to various ambiguities. We explore models with writer-dependent parameters which take the writer's identity as an additional input. The proposed models can be trained on datasets with partitions likely written by a single author (e.g. single letter, diary, or chronicle). We propose a Writer Style Block (WSB), an adaptive instance normalization layer conditioned on learned embeddings of the partitions. We experimented with various placements and settings of WSB and contrastively pre-trained embeddings. We show that our approach outperforms a baseline with no WSB in a writer-dependent scenario and that it is possible to estimate embeddings for new writers. However, domain adaptation using simple finetuning in a writer-independent setting provides superior accuracy at a similar computational cost. The proposed approach should be further investigated in terms of training stability and embedding regularization to overcome such a baseline.

Klíčová slova

Handwritten text recognition, OCR, Domain adaptation, Domain dependent parameters, Finetuning, CTC.

Autoři

KOHÚT, J.; HRADIŠ, M.; KIŠŠ, M.

Vydáno

19. 8. 2023

Nakladatel

Springer Nature Switzerland AG

Místo

San José

ISBN

978-3-031-41684-2

Kniha

Document Analysis and Recognition - ICDAR 2023

Edice

Lecture Notes in Computer Science

ISSN

0302-9743

Periodikum

Lecture Notes in Computer Science

Ročník

14190

Číslo

1

Stát

Spolková republika Německo

Strany od

377

Strany do

394

Strany počet

18

URL

BibTex

@inproceedings{BUT185150,
  author="Jan {Kohút} and Michal {Hradiš} and Martin {Kišš}",
  title="Towards Writing Style Adaptation in Handwriting Recognition",
  booktitle="Document Analysis and Recognition - ICDAR 2023",
  year="2023",
  series="Lecture Notes in Computer Science",
  journal="Lecture Notes in Computer Science",
  volume="14190",
  number="1",
  pages="377--394",
  publisher="Springer Nature Switzerland AG",
  address="San José",
  doi="10.1007/978-3-031-41685-9\{_}24",
  isbn="978-3-031-41684-2",
  issn="0302-9743",
  url="https://pero.fit.vutbr.cz/publications"
}