Detail publikace
Bayesian Optimization Algorithms for Dynamic Problems
KOBLIHA, M. SCHWARZ, J. OČENÁŠEK, J.
Originální název
Bayesian Optimization Algorithms for Dynamic Problems
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Thispaper is an experimental study investigating the capability ofBayesian optimization algorithms to solve dynamic problems. We testedthe performance of two variants of Bayesian optimization algorithms -Mixed continuous-discrete Bayesian Optimization Algorithm (MBOA),Adaptive Mixed Bayesian Optimization Algorithm (AMBOA) - and newproposed modifications with embedded Sentinels concept andHypervariance. We have compared the performance of these variants ona simple dynamic problem - a time-varying function with predefinedparameters. The experimental resultsconfirmed the benefit of Sentinels concept and Hypervariance embeddedinto MBOA algorithm for tracking a moving optimum.
Klíčová slova
BOA algorithm, dynamic problem, optimalization
Autoři
KOBLIHA, M.; SCHWARZ, J.; OČENÁŠEK, J.
Rok RIV
2006
Vydáno
8. 3. 2006
Nakladatel
Springer Verlag
Místo
Budapest
ISBN
3-540-33237-5
Kniha
Applications of Evolutionary Computing
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Ročník
2006
Číslo
3907
Stát
Spolková republika Německo
Strany od
800
Strany do
804
Strany počet
5
BibTex
@inproceedings{BUT22416,
author="Miloš {Kobliha} and Josef {Schwarz} and Jiří {Očenášek}",
title="Bayesian Optimization Algorithms for Dynamic Problems",
booktitle="Applications of Evolutionary Computing",
year="2006",
journal="Lecture Notes in Computer Science",
volume="2006",
number="3907",
pages="800--804",
publisher="Springer Verlag",
address="Budapest",
isbn="3-540-33237-5",
issn="0302-9743"
}