Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVÁK, D. LEHKÝ, D.
Originální název
Identification of Quasibrittle material parameters based on stochastic nonlinear simulation and artificial neural networks
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
A new approach of inverse analysis is proposed to obtain material parameters of a constitutive law for quasibrittle material in order to achieve the best agreement with experimental data. The inverse analysis is based on the coupling of a stochastic simulation and an artificial neural network (ANN). The identification parameters play the role of basic random variables with a scatter reflecting the physical range of potential values. A novelty of the approach is the utilization of the efficient small-sample simulation method Latin Hypercube Sampling (LHS) used for the stochastic preparation of the training set utilized in training the neural network. Once the network has been trained, it represents an aapproximation consequently utilized to provide the best possible set of model parameters for the given experimental data.
Klíčová slova
Identification, materila parameters, stochastic nonlinear simulation, artificial neural networks
Autoři
NOVÁK, D.; LEHKÝ, D.
Rok RIV
2007
Vydáno
25. 6. 2007
Místo
Praha, Česká republika
Strany od
94
Strany do
95
Strany počet
2
BibTex
@inproceedings{BUT23249, author="Drahomír {Novák} and David {Lehký}", title="Identification of Quasibrittle material parameters based on stochastic nonlinear simulation and artificial neural networks", booktitle="MHM 2007", year="2007", pages="94--95", address="Praha, Česká republika" }