Detail publikačního výsledku

Discretized pantograph equation with a forcing term: Note on asymptotic estimate

KUNDRÁT, P.

Originální název

Discretized pantograph equation with a forcing term: Note on asymptotic estimate

Anglický název

Discretized pantograph equation with a forcing term: Note on asymptotic estimate

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

The paper deals with the asymptotic estimate of solutions of a difference equation, which arises as a discretization of pantograph equation with a forcing term. The term with delayed argument is approximated via linear interpolation between the closest mesh points. The derived asymptotic estimate is compared with the estimate corresponding to the continuous counterpart.

Anglický abstrakt

The paper deals with the asymptotic estimate of solutions of a difference equation, which arises as a discretization of pantograph equation with a forcing term. The term with delayed argument is approximated via linear interpolation between the closest mesh points. The derived asymptotic estimate is compared with the estimate corresponding to the continuous counterpart.

Klíčová slova

asymptotic estimate, difference equation

Klíčová slova v angličtině

asymptotic estimate, difference equation

Autoři

KUNDRÁT, P.

Rok RIV

2011

Vydáno

01.11.2010

Nakladatel

World Scientific Publishing Co.

Místo

London

ISBN

978-981-4287-64-7

Kniha

DISCRETE DYNAMICS AND DIFFERENCE EQUATIONS Proceedings of the Twelfth International Conference on Difference Equations and Applications

Strany od

307

Strany do

312

Strany počet

6

BibTex

@inproceedings{BUT36429,
  author="Petr {Tomášek}",
  title="Discretized pantograph equation with a forcing term: Note on asymptotic estimate",
  booktitle="DISCRETE DYNAMICS AND DIFFERENCE EQUATIONS Proceedings of the Twelfth International Conference on Difference Equations and Applications",
  year="2010",
  pages="307--312",
  publisher="World Scientific Publishing Co.",
  address="London",
  isbn="978-981-4287-64-7"
}