Detail publikace

Bayesian Optimization Algorithms for Multi-Objective Optimization

LAUMANNS, M. OČENÁŠEK, J.

Originální název

Bayesian Optimization Algorithms for Multi-Objective Optimization

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

In recent years, several researchers have concentrated on using probabilistic models in evolutionary algorithms. These Estimation Distribution Algorithms (EDA) incorporate methods for automated learning of correlations between variables of the encoded solutions. The process of sampling new individuals from a probabilistic model respects these mutual dependencies among genes such that disruption of important building blocks is avoided, in comparison with classical recombination operators. The goal of this paper is to investigate the usefulness of this concept in multi-objective evolutionary optimization, where the aim is to approximate the set of Pareto-optimal solutions. We integrate the model building and sampling techniques of a special EDA called Bayesian Optimization Algorithm based on binary decision trees into a general evolutionary multi-objective optimizer. A potential performance gain is empirically tested in comparison with other state-of-the-art multi-objective EA on the bi-objective 0/1 knapsack problem.

Klíčová slova

probabilistic models,Estimation Distribution Algorithms, multi-objective evolutionary optimization, Pareto-optimal solutions, Bayesian Optimization Algorithm, binary decision trees, knapsack problem.

Autoři

LAUMANNS, M.; OČENÁŠEK, J.

Rok RIV

2004

Vydáno

7. 9. 2002

Nakladatel

Springer Verlag

Místo

Granada

ISBN

3-540-444139-5

Kniha

Parallel Problem Solving from Nature - PPSN VII

ISSN

0302-9743

Periodikum

Lecture Notes in Computer Science

Ročník

2002

Číslo

2439

Stát

Spolková republika Německo

Strany od

298

Strany do

307

Strany počet

10

BibTex

@article{BUT41072,
  author="Marco {Laumanns} and Jiří {Očenášek}",
  title="Bayesian Optimization Algorithms for Multi-Objective Optimization",
  journal="Lecture Notes in Computer Science",
  year="2002",
  volume="2002",
  number="2439",
  pages="298--307",
  issn="0302-9743"
}