Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
LAUMANNS, M.; OČENÁŠEK, J.
Originální název
Bayesian Optimization Algorithms for Multi-Objective Optimization
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
In recent years, several researchers have concentrated on usingprobabilistic models in evolutionary algorithms. These EstimationDistribution Algorithms (EDA) incorporate methods for automatedlearning of correlations between variables of the encoded solutions.The process of sampling new individuals from a probabilistic modelrespects these mutual dependencies among genes such that disruption ofimportant building blocks is avoided, in comparison with classicalrecombination operators. The goal of this paper is to investigate theusefulness of this concept in multi-objective evolutionaryoptimization, where the aim is to approximate the set of Pareto-optimalsolutions. We integrate the model building and sampling techniques of aspecial EDA called Bayesian Optimization Algorithm based on binarydecision trees into a general evolutionary multi-objective optimizer. Apotential performance gain is empirically tested in comparison withother state-of-the-art multi-objective EA on the bi-objective 0/1knapsack problem.
Anglický abstrakt
Klíčová slova
probabilistic models,Estimation Distribution Algorithms,multi-objective evolutionary optimization, Pareto-optimal solutions,Bayesian Optimization Algorithm, binary decision trees, knapsackproblem.
Klíčová slova v angličtině
Autoři
Vydáno
07.09.2002
Nakladatel
Springer Verlag
Místo
Granada
ISBN
3-540-444139-5
Kniha
Parallel Problem Solving from Nature - PPSN VII
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Svazek
2002
Číslo
2439
Stát
Spolková republika Německo
Strany od
298
Strany do
307
Strany počet
10
BibTex
@article{BUT41072, author="Marco {Laumanns} and Jiří {Očenášek}", title="Bayesian Optimization Algorithms for Multi-Objective Optimization", journal="Lecture Notes in Computer Science", year="2002", volume="2002", number="2439", pages="298--307", issn="0302-9743" }