Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LAUMANNS, M. OČENÁŠEK, J.
Originální název
Bayesian Optimization Algorithms for Multi-Objective Optimization
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
In recent years, several researchers have concentrated on using probabilistic models in evolutionary algorithms. These Estimation Distribution Algorithms (EDA) incorporate methods for automated learning of correlations between variables of the encoded solutions. The process of sampling new individuals from a probabilistic model respects these mutual dependencies among genes such that disruption of important building blocks is avoided, in comparison with classical recombination operators. The goal of this paper is to investigate the usefulness of this concept in multi-objective evolutionary optimization, where the aim is to approximate the set of Pareto-optimal solutions. We integrate the model building and sampling techniques of a special EDA called Bayesian Optimization Algorithm based on binary decision trees into a general evolutionary multi-objective optimizer. A potential performance gain is empirically tested in comparison with other state-of-the-art multi-objective EA on the bi-objective 0/1 knapsack problem.
Klíčová slova
probabilistic models,Estimation Distribution Algorithms, multi-objective evolutionary optimization, Pareto-optimal solutions, Bayesian Optimization Algorithm, binary decision trees, knapsack problem.
Autoři
LAUMANNS, M.; OČENÁŠEK, J.
Rok RIV
2004
Vydáno
7. 9. 2002
Nakladatel
Springer Verlag
Místo
Granada
ISBN
3-540-444139-5
Kniha
Parallel Problem Solving from Nature - PPSN VII
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Ročník
2002
Číslo
2439
Stát
Spolková republika Německo
Strany od
298
Strany do
307
Strany počet
10
BibTex
@article{BUT41072, author="Marco {Laumanns} and Jiří {Očenášek}", title="Bayesian Optimization Algorithms for Multi-Objective Optimization", journal="Lecture Notes in Computer Science", year="2002", volume="2002", number="2439", pages="298--307", issn="0302-9743" }