Detail publikačního výsledku

The Density of Infinitely Differentiable Functions in Sobolev Spaces with Mixed Boundary Cinditions

ŽENÍŠEK, A.

Originální název

The Density of Infinitely Differentiable Functions in Sobolev Spaces with Mixed Boundary Cinditions

Anglický název

The Density of Infinitely Differentiable Functions in Sobolev Spaces with Mixed Boundary Cinditions

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

We present a detailed proof of the density of the set C^{\infty}\overline{\Omega}V in the space of test function V\inH^1(\Omega) that vanish on some part of the boundary \diff\Omega of a bounded domain \Omega

Anglický abstrakt

We present a detailed proof of the density of the set C^{\infty}\overline{\Omega}V in the space of test function V\inH^1(\Omega) that vanish on some part of the boundary \diff\Omega of a bounded domain \Omega

Klíčová slova

density theorems, finite element method

Klíčová slova v angličtině

density theorems, finite element method

Autoři

ŽENÍŠEK, A.

Rok RIV

2011

Vydáno

01.01.2006

ISSN

0862-7940

Periodikum

Applications of Mathematics

Svazek

51

Číslo

5

Stát

Česká republika

Strany od

517

Strany počet

31

BibTex

@article{BUT45248,
  author="Alexander {Ženíšek}",
  title="The Density of Infinitely Differentiable Functions in Sobolev Spaces with Mixed Boundary Cinditions",
  journal="Applications of Mathematics",
  year="2006",
  volume="51",
  number="5",
  pages="31",
  issn="0862-7940"
}