Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
GRÉZL, F. KARAFIÁT, M. ČERNOCKÝ, J.
Originální název
Neural network topologies and bottle neck features in speech recognition
Typ
prezentace, poster
Jazyk
angličtina
Originální abstrakt
Different neural net topologies for estimating features for speech recognition were presented. We introduced bottle-neck structure into previously proposed Split Context. This was done mainly to reduce size of resulting neural net, which serves as feature estimator. When bottle-neck outputs are used also as final outputs from neural network instead of probability estimates, the reduction of word error rate is also reached.
Klíčová slova
neural networks, topologies, speech recognition, bottle-neck features
Autoři
GRÉZL, F.; KARAFIÁT, M.; ČERNOCKÝ, J.
Vydáno
28. 6. 2007
Místo
Brno
Strany od
78
Strany do
82
Strany počet
5
URL
http://www.fit.vutbr.cz/~grezl/publi/mlmi2007.pdf
BibTex
@misc{BUT63689, author="František {Grézl} and Martin {Karafiát} and Jan {Černocký}", title="Neural network topologies and bottle neck features in speech recognition", year="2007", pages="78--82", address="Brno", url="http://www.fit.vutbr.cz/~grezl/publi/mlmi2007.pdf", note="presentation, poster" }