Detail publikačního výsledku

Approximations of the partial derivatives by averaging

DALÍK, J.

Originální název

Approximations of the partial derivatives by averaging

Anglický název

Approximations of the partial derivatives by averaging

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

A straightforward generalization of a classical method of averaging is presented and its essential characteristics are discussed. The method constructs high-order approximations of l-th partial derivatives of smooth functions in inner vertices of conformal simplicial triangulations of bounded polytopic domains of arbitrary dimensions d > 1. For any k >= l >= 1, it uses the interpolants of u in the polynomial Lagrange finite element spaces of degree k on the simplices with vertex a only.

Anglický abstrakt

A straightforward generalization of a classical method of averaging is presented and its essential characteristics are discussed. The method constructs high-order approximations of l-th partial derivatives of smooth functions in inner vertices of conformal simplicial triangulations of bounded polytopic domains of arbitrary dimensions d > 1. For any k >= l >= 1, it uses the interpolants of u in the polynomial Lagrange finite element spaces of degree k on the simplices with vertex a only.

Klíčová slova

Regular simplicial triangulation, Lagrange finite element, averaging the partial derivatives, high-order approximations

Klíčová slova v angličtině

Regular simplicial triangulation, Lagrange finite element, averaging the partial derivatives, high-order approximations

Autoři

DALÍK, J.

Rok RIV

2013

Vydáno

01.02.2012

Nakladatel

Versita Ltd, 78 York Street, London W1H 1DP, Great Britain

Místo

London

ISSN

1895-1074

Periodikum

Central European Journal of Mathematics

Svazek

10

Číslo

1

Stát

Polská republika

Strany od

44

Strany do

54

Strany počet

11

BibTex

@article{BUT75469,
  author="Josef {Dalík}",
  title="Approximations of the partial derivatives by averaging",
  journal="Central European Journal of Mathematics",
  year="2012",
  volume="10",
  number="1",
  pages="44--54",
  issn="1895-1074"
}