Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠTRBA, M. HEROUT, A. HAVEL, J.
Originální název
Handwritten Digits Recognition Improved by Multiresolution Classifier Fusion
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
One common approach to construction of highly accurate classifiers for hadwritten digit recognition is fusion of several weaker classifiers into a compound one, which (when meeting some constraints) outperforms all the individual fused classifiers. This paper studies the possibility of fusing classifiers of different kinds (Self-Organizing Maps, Randomized Trees, and AdaBoost with MB-LBP weak hypotheses) constructed on training sets resampled to different resolutions. While it is common to select one resolution of the input samples as the ``ideal one'' and fuse classifiers constructed for it, this paper shows that the accuracy of classification can be improved by fusing information from several scales.
Klíčová slova
Digit Recognition, Classifier Fusion, Multiresolution
Autoři
ŠTRBA, M.; HEROUT, A.; HAVEL, J.
Rok RIV
2011
Vydáno
1. 6. 2011
Nakladatel
Springer Verlag
Místo
Berlin
ISBN
978-3-642-21256-7
Kniha
Proceedings of IbPRIA 2011, LNCS
Strany od
726
Strany do
733
Strany počet
8
BibTex
@inproceedings{BUT76284, author="Miroslav {Štrba} and Adam {Herout} and Jiří {Havel}", title="Handwritten Digits Recognition Improved by Multiresolution Classifier Fusion", booktitle="Proceedings of IbPRIA 2011, LNCS", year="2011", pages="726--733", publisher="Springer Verlag", address="Berlin", isbn="978-3-642-21256-7" }