Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
JURÁNEK, R. MACHALÍK, S. ZEMČÍK, P.
Originální název
Analysis Wear Debris Through Classification
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
This paper introduces a novel method of wear debris analysis through classification of the particles based on machine learning. Wear debris consists of particles of metal found in e.g. lubricant oils used in engineering equipment. Analytical ferrography is one of methods for wear debris analysis and it is very important for early detection or even prevention of failures in engineering equipment, such as combustion engines, gearboxes, etc. The proposed novel method relies on classification of wear debris particles into several classes defined by the origin of such particles. Unlike the earlier methods, the proposed classification approach is based on visual similarity of the particles and supervised machine learning. The paper describes the method itself, demonstrates its experimental results, and draws conclusions.
Klíčová slova
Wear, Wear Debris, Classification, AdaBoost, CS-LBP, LBP
Autoři
JURÁNEK, R.; MACHALÍK, S.; ZEMČÍK, P.
Rok RIV
2011
Vydáno
22. 8. 2011
Nakladatel
Springer Verlag
Místo
Heidelberg
ISBN
978-3-642-23686-0
Kniha
Proceedings of Advanced Concepts of Inteligent Vision Systems (ACIVS 2011)
Edice
Lecture Notes in Computer Science
Strany od
273
Strany do
283
Strany počet
11
BibTex
@inproceedings{BUT76367, author="Roman {Juránek} and Stanislav {Machalík} and Pavel {Zemčík}", title="Analysis Wear Debris Through Classification", booktitle="Proceedings of Advanced Concepts of Inteligent Vision Systems (ACIVS 2011)", year="2011", series="Lecture Notes in Computer Science", volume="6915", pages="273--283", publisher="Springer Verlag", address="Heidelberg", isbn="978-3-642-23686-0" }