Detail publikačního výsledku

On stability intervals of Euler methods for a delay differential equation

HRABALOVÁ, J.

Originální název

On stability intervals of Euler methods for a delay differential equation

Anglický název

On stability intervals of Euler methods for a delay differential equation

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

The paper discusses the asymptotic stability regions of Euler discretizations for a linear delay differential equation y'(t) = a y(t-\tau). We compare our results with the asymptotic stability domain for the underlying delay differential equation.

Anglický abstrakt

The paper discusses the asymptotic stability regions of Euler discretizations for a linear delay differential equation y'(t) = a y(t-\tau). We compare our results with the asymptotic stability domain for the underlying delay differential equation.

Klíčová slova

delay differential equation, Euler methods, asymptotic stability

Klíčová slova v angličtině

delay differential equation, Euler methods, asymptotic stability

Autoři

HRABALOVÁ, J.

Rok RIV

2013

Vydáno

07.02.2012

Nakladatel

Aplimat

Místo

Bratislava

ISBN

978-80-89313-58-7

Kniha

APLIMAT 11th INTERNATIONAL CONFERENCE

Strany od

153

Strany do

160

Strany počet

8

BibTex

@inproceedings{BUT89854,
  author="Jana {Dražková}",
  title="On stability intervals of Euler methods for a delay differential equation",
  booktitle="APLIMAT 11th INTERNATIONAL CONFERENCE",
  year="2012",
  pages="153--160",
  publisher="Aplimat",
  address="Bratislava",
  isbn="978-80-89313-58-7"
}