Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HRADIŠ, M. KOLÁŘ, M. KRÁL, J. LÁNÍK, A. ZEMČÍK, P. SMRŽ, P.
Originální název
Annotating images with suggestions - user study of a tagging system
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
This paper explores the concept of image-wise tagging. It introduces a web-based user interface for image annotation, and a novel method for modeling dependencies of tags using Restricted Boltzmann Machines which is able to suggest probable tags for an image based on previously assigned tags. According to our user study, our tag suggestion methods improve both user experience and annotation speed. Our results demonstrate that large datasets with semantic labels (such as in TRECVID Semantic Indexing) can be annotated much more efficiently with the proposed approach than with current class-domain-wise methods, and produce higher quality data.
Klíčová slova
Restricted Boltzmann Machine, human-assisted learning, user interface, image tagging, crowdsourcing, image classification
Autoři
HRADIŠ, M.; KOLÁŘ, M.; KRÁL, J.; LÁNÍK, A.; ZEMČÍK, P.; SMRŽ, P.
Rok RIV
2012
Vydáno
10. 7. 2012
Nakladatel
Springer Verlag
Místo
Brno
ISBN
978-3-642-33139-8
Kniha
Advanced Concepts for Intelligent Vision Systems
Edice
Lecture Notes in Computer Science
ISSN
0302-9743
Periodikum
Číslo
7517
Stát
Spolková republika Německo
Strany od
155
Strany do
166
Strany počet
12
URL
https://www.fit.vut.cz/research/publication/9990/
BibTex
@inproceedings{BUT96955, author="Michal {Hradiš} and Martin {Kolář} and Jiří {Král} and Aleš {Láník} and Pavel {Zemčík} and Pavel {Smrž}", title="Annotating images with suggestions - user study of a tagging system", booktitle="Advanced Concepts for Intelligent Vision Systems", year="2012", series="Lecture Notes in Computer Science", journal="Lecture Notes in Computer Science", number="7517", pages="155--166", publisher="Springer Verlag", address="Brno", doi="10.1007/978-3-642-33140-4\{_}14", isbn="978-3-642-33139-8", issn="0302-9743", url="https://www.fit.vut.cz/research/publication/9990/" }