Detail publikace

Uniform exponential stability of linear delayed integro-differential vector equations

BEREZANSKY, L. DIBLÍK, J. SVOBODA, Z. ŠMARDA, Z.

Originální název

Uniform exponential stability of linear delayed integro-differential vector equations

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Uniform exponential stability of a linear delayed integro-differential vector equation is considered. The main result is of an explicit type, depending on all delays, and its proof is based on an a priori estimation of solutions, a Bohl-Perron type result, and utilization of the matrix measure.

Klíčová slova

A priori estimation; Delay; Exponential stability; Integro-differential systems; Linear systems Bohl-Perron type result

Autoři

BEREZANSKY, L.; DIBLÍK, J.; SVOBODA, Z.; ŠMARDA, Z.

Vydáno

5. 1. 2021

ISSN

0022-0396

Periodikum

J.Differetial Equations

Ročník

270

Číslo

5

Stát

Spojené státy americké

Strany od

573

Strany do

595

Strany počet

23

URL

BibTex

@article{BUT171676,
  author="Leonid {Berezansky} and Josef {Diblík} and Zdeněk {Svoboda} and Zdeněk {Šmarda}",
  title="Uniform exponential stability of linear delayed integro-differential vector equations",
  journal="J.Differetial Equations",
  year="2021",
  volume="270",
  number="5",
  pages="573--595",
  doi="10.1016/j.jde.2020.08.011",
  issn="0022-0396",
  url="https://www.sciencedirect.com/science/article/pii/S0022039620304551"
}