Detail publikace
CELLULAR CATEGORIES AND STABLE INDEPENDENCE
LIEBERMAN, M. VASEY, S. ROSICKÝ, J.
Originální název
CELLULAR CATEGORIES AND STABLE INDEPENDENCE
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin-Eklof-Trlifaj are stable and tame. On the other hand, we give a simpler proof (in a special case) that combinatorial categories are closed under 2-limits, a theorem of Makkai and Rosický.
Klíčová slova
cellular categories; forking; stable independence; abstract elementary class; cofibrantly generated; roots of Ext
Autoři
LIEBERMAN, M.; VASEY, S.; ROSICKÝ, J.
Vydáno
18. 5. 2022
Nakladatel
CAMBRIDGE UNIV PRESS
Místo
CAMBRIDGE
ISSN
1943-5886
Periodikum
JOURNAL OF SYMBOLIC LOGIC
Ročník
18.05.2022
Číslo
18.05.2022
Stát
Spojené státy americké
Strany počet
24
URL
BibTex
@article{BUT181492,
author="Michael Joseph {Lieberman} and Sebastien {Vasey} and Jiří {Rosický}",
title="CELLULAR CATEGORIES AND STABLE INDEPENDENCE",
journal="JOURNAL OF SYMBOLIC LOGIC",
year="2022",
volume="18.05.2022",
number="18.05.2022",
pages="24",
doi="10.1017/jsl.2022.40",
issn="1943-5886",
url="http://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/cellular-categories-and-stable-independence/CAE1BCB1D51CBDFE69996abs5429970A177"
}